How Long Did Clovis Last? A Re-assessment of the Clovis and Other Paleoindian Occupations Using Bayseian Statistics and IntCall3 > "All models are wrong, but some are useful." George E. P., Norman R. Draper (1987) How long did Clovis last as a phase? It is a question that has important implications for understanding Clovis expansion, demographics, and relationships to other contemporaneous, pre- and post-Clovis cultural phenomena. Previous analyses of the question have focused on increasing the accuracy and precision of the large pool of available RC ages (e.g., Waters and Stafford [W&S] 2007; Faught 2008) and have inferred the structure and length of the Clovis Phase from the RC ages. In contrast, we propose that the *first* step in the analysis is to model the archaeological phenomenon and then evaluate the RC ages in the context of the model. The model of the archaeological phenomenon should direct how the RC ages are treated, not the other way around. Here, we show ways to evaluate the ages in more disciplined ways using Oxcal's online Bayseian statistical package for calibrating and modeling data sets into phases and sequences of phases. ### What's Wrong with Previous Models? Models (explicit or implicit) are always used to evaluate a set of related RC ages, regardless of whether RC ages are evaluated as a set of independent data points or as a group of related ages. For example, W&S bracketed the Clovis Phase by using the latest end of the earliest age (the Lange-Ferguson average) and the earliest end of the latest age (the Jake Bluff average) making several assumptions about the imprecision in RC ages and the growth and demise of the Clovis phenomenon. In contrast, Faught proposed that two or more ages from a single stratum would make more accurate ages and that averaging would increase Both W&S and Faught (2008) assume that the RC ages that define the Clovis Phase can be made more precise by eliminating ages with large sigmas, averaging ages in strata, and "bracketing" the phase with the earliest and latest averaged ages. Both W&S and Faught adopt models that bracket Clovis as a unitary phenomenon with abrupt beginning and end points, analogous to an Oxcal "Boundary Model". An alternative, and one that we think is likely, posits an initial, small population that grows through time and eventually transitions into subsequent cultures in different regions of North America (e.g., Folsom on the Plains and Debert/Vail in the Northeast). This model would describe the Clovis phenomenon whether it was the spread of an initial population or a new idea through an existing population. Under either scenario, the number of people or number of converts in an existing population was initially small, gradually increased through time, and then declined in popularity. This alternative is known as a "Trapezium model." ### **Bayesian Analysis: A Better Way to Model** Here, we use Bayesian analysis to evaluate different models of the Clovis and other Paleoindian phenomena. All the Bayesian analyses used here were run in OxCal 4.2 using the most recent IntCal13 curve data (Bronk Ramsey 2009). This curve is more precise than the previous two calibration curves (IntCal04 and IntCal09). We analyzed six different data sets including W&S's samples, a more liberal sample set of potential Clovis sites, examples of sequences of progeny culture groups in the Plains and the Northeast, a data set of Fishtail fluted point sites from Southern South America, and a sample of Stemmed point sites from the Western United States to show that there are other culture groups on the landscape at the David Thulman and Michael Faught Archaeological Research Cooperative ## HOW TO INTERPRET THE TIMELINES These timelines were developed from the results of the OxCal 4.3 analyses producing Trapezium and Boundary models as indicated for each line. The results are probabilities so that each corner on the trapezoid or rectangle is actually a wide spread of ages. For example, the start of the start of the Eastern Clovis Phase Trapezoid Model falls somewhere between 13008 (A) and 121916 calBP, and the end of the start falls between 12785 (B) and 12661 calBP. The span of the start that is represented by the slanted line to the left is somewhere between 0 and 121 years in length. Waters and Stafford Estimate of the Clovis Phase (Gray) and Trapezium Model of Same Ages (Green) Trapezium Model of Liberal Clovis Set Trapezium Model of Plains Clovis to Folsom Tranezium Model of Eastern Clovis to Debert, Bull Brook, Michaud, and Cormier Frapezium Model of South American Fishtail Trapezium Model of Western Stemmed Western Stemmed 13038 Span of Start 12668 Span of End W&S Boundary end 12701 to 12666 Span of W&S Boundary 153-25 W&S Trapezium Start of End W&S Boundary start 12941 to 12852 W&S Trapezium End of End Liberal Clovis Start of End Plains CL/Folsom End of Transition 12577 East CL/Debert Start of Transition East CL/Debert End of Transition Debert/Bull Brook Start of Transition Bull Brook/Michaud Start of Transition 12 Michaud/Cormier Start of Transition Cormier Start of End Cormier End of End Fishtail Start of End Fishtail End of End Western Stemmed End of End Debert/Bull Brook End of Transition 12599 Span of Bull Brook: 111-327 Bull Brook/Michaud End of Transition 12256 *Span of Michaud: 48-270* Michaud/Cormier End of Transition 11991 Span of Cormier: 0-100 Western Stemmed End of Start 13219 Span of W. Stem 1348-1654 Western Stemmed Start of End 12134 Span of End 0-1285 Liberal Clovis End of End 12915 Span of W&S Trap 163-332 Span of Liberal CL 464-608 Span of Plains CL 578-748 12914 Span of East CL: 107-237 Span of Transition: 0-84 Span of Debert: 20-146 Span of Transition: 0-139 12903 **Span of Fishtails** 248-444 Span of End Span of Transition: 0-170 Span of End 0-76 Number of Sites & Dates W&S sites= W&S ages = Liberal Clovis sites = 19 Liberal Clovis ages = 61 Plains Clovis sites= Plains Clovis ages = Number of Sites & Ages Debert/Vail sites = Debert/Vail ages = Bull Brook sites = Cormier sites = Cormier ages = Fishtail sites = Fishtail ages = Western Stemmed sites = 1 Western Stemmed ages= 42 Bull Brook ages = 4 Michaud/Neponset sites = 4 Michaud/Neponset ages = 4 Eastern Clovis ages = 12 In the Trapezium sequence model the nodes represent the start of the end of Eastern Clovis (C) and they are coincident with the start of the start of the rise of the Debert/Vail Phase (E). Likewise, the end of the end of the Eastern Clovis Phase (D) is coincident with the end of the start of the Debert/Vail Phase (F). The start of the decline and end of the decline of the Debert/Vail Phase (*G* and *H*) coincides with the start of the start and end of the start of the Bull Brook Phase, and so on. In a Boundary Model the boundaries are areas or spans of probability that mark the earliest and latest ages of the phase(s). The program also produces the probable span of a phase and its beginning and ending, and this information is included in the timelines. Comparison of the IntCal 04, 09, and 13 Calibration Curves ### WHAT IS BAYESIAN ANALYSIS? Bayesian analysis is a method for calculating the chance of an occurrence of an event based on prior information that informs the likelihood of that event. A Bayesian analysis repeatedly calculates the chances of an event occurring and, after a sufficient number of calculations, arrives at the most likely result given the prior constraints and the data. The idea was originally formulated in the 1700's by Reverend Bayes, but it was not until the advent of computers that the method could be widely applied. In the Bayesian analysis of radiocarbon ages, our prior knowledge constrains the possible RC and calibrated ages. For instance, the Law of Superposition requires that lower stratum A was laid down earlier than stratum B above. Thus, even though the sigmas of RC ages from strata A & B overlap, the Law of Superimposition requires that the calibrated age of stratum A must precede the calibrated age of stratum B. A Bayesian analysis runs through all the possibilities that meet these constraints and converges on the most likely result. The number of iterations in a Bayesian analysis can run into the millions depending on the number of samples being For the analyses here, we ran two basic models of several offered by Oxcal 4.2: Phase and Sequence. A Phase model presupposes that we know the RC ages are related in time but we don't know their temporal order. We used variations of the *Phase* model to define the cultural phenomena Clovis, Folsom, Debert, etc. A Sequence model presupposes that we know the order of the RC ages. Here we don't know the order of the ages within a Phase, but we know the order of the Phases. Thus, we can instruct OxCal 4.2 to consider the RC ages for each cultural phenomenon as a *Phase* and to order the Phases in a *Sequence* with Clovis at the early end followed by Folsom in one case and Debert/Vail, Bull Brook, etc. in another. OxCal 4.2 provides several Indices that allow one to evaluate the extent and quality of the model. For our purposes, the most important is the A_{model} index, which is a measure of the overall quality of the model. If A_{model} drops below 60, the model is suspect. The relative quality of models can be assessed by comparing the A_{model} indices; a higher index indicates a better model. ### **Some Important Considerations** Averaging is not needed (or usually appropriate) to increase precision. Results from the one sigma error range are adequate. Simulations run in OxCal 4.2 demonstrate that we can have high confidence in using the results from RC ages with one sigma error (Bayliss et al. 2007). It is not necessary to automatically exclude outliers. There should be additional reasons for excluding an age as an outlier, because we would expect about 1 in 20 RC ages to be outlier. ### Which Age Sets Are Included? 1. W&S 2007:1124, Table 1 data set used to estimate of the range of the Clovis phase 2. A "Liberal" set of Clovis ages that includes sites excluded by W&S (Aubrey, Blackwater Draw, Cactus Hill, Hiscock, Kanorado, Lubbock Lake, and Sheridan Cave), as well as recently published ages not available then (Blackwater Draw, Sheriden). 3. A cull of ages from the Liberal set west of the Mississippi to run a sequence trapezoid model with ages from Folsom sites listed in Collard et al (2010). 4. A cull of ages from the Liberal set east of the Mississippi to run a sequence trapezoid model of Clovis-to-Debert-through-Cormier based on phases proposed by Bradley et al. (2008). 5. a compilation of South American Fishtail ages culled from Faught (2008) and processed using ShCall3 showing close contemporaneity with the people who made Clovis points in North **6**. a compilation of ages from Stemmed Point sites west of the Rocky Mountains from Davis and Schwegger (2004); Faught (2008), Goebel (2007); Jenkins (2007); and Pitblado (200) showing contemporaneous culture groups in North America with the people who made Clovis points. # Trapezium Model Trapeziums Model ### Waters & Stafford Sites and Ages Sequence WS2007 Boundary Start 1 Start Start of Start 1 R_Date Lange-Ferguson AA-905 R_Date Lange-Ferguson UCIAMS 11345 R_Date Lange-Ferguson UCIAMS 11344 R_Date Sloth-Hole SL-2850 R_Date Anzick Beta-163832 R_Date Anzick Beta-168967 R_Date Dent UCIAMS-11340 R_Date Dent UCIAMS-11339 R_Date PaleoCrossing AA-8250-0 ____ ___ R_Date PaleoCrossing AA-8250-E R_Date PaleoCrossing AA-8250-D R_Date Domebo UCIAMS-11341 R_Date Lehner Site SMU-264 R_Date Lehner Site SMU-181 -R_Date Lehner Site SMU-196 R_Date Lehner Site SMU-194 ___ _ R_Date Lehner Site SMU-290 ___ R_Date Lehner Site A-378 R_Date Lehner Site SMU-164 R_Date Lehner Site SMU-168 ___ R_Date Lehner Site SMU-340 R_Date Lehner Site SMU-297 _ R_Date Lehner Site SMU-347 R_Date Lehner Site SMU-308 R_Date Shawnee-Minisink Beta 10193 R_Date Shawnee-Minisink Beta 12716 _____ R_Date Shawnee-Minisink Beta-20386 ___ R_Date Shawnee-Minisink UCIAM\$-24865 R_Date Shawnee-Minisink UCIAM\$-24866 R_Date Murray Springs SMU-18 R_Date Murray Springs Tx-1413 R_Date Murray Springs Tx-1462 R_Date Murray Springs SMU-27 ____ R_Date Murray Springs SMU-41 R_Date Murray Springs SMU-42 _ R_Date Murray Springs Tx-1459 R_Date Colby UCIAMS-11342 R_Date Colby UCIAMS-11343 R_Date Jake Bluff CAMS-79940 R_Date Jake Bluff CAMS-90968 R_Date Jake Bluff CAMS-90969 Start Start of End 1 End End of End 1 ### **Liberal Clovis** ___ Multiplots of Single Calibrated Ages (gray) and Bayesian Calibrated Ages (Black) for Each of the Data Sets ## Plains Clovis to Folsom ____ _ ___ ___ ____ ____ ___ ____ ____ <u>√⊇3</u> _____ ----- ______ ----- _____ ____ ______ ____ ______ Sequence Plains Clovis to Folsom Trapezium Boundary Start Plains Clovis Start Start of Start Plains Clovis End End of Start Plains Clovis R_Date Lange-Ferguson AA-905 R_Date Anzick Beta-163832 R_Date Anzick Beta-168967 R Date Dent UCIAMS-11340 R_Date Dent UCIAMS-11339 R_Date Domebo UCIAMS-11341 R_Date Lehner Site SMU-264 R_Date Lehner Site SMU-181 R_Date Lehner Site SMU-196 R_Date Lehner Site SMU-194 R_Date Lehner Site SMU-290 Date Lehner Site A-378 R_Date Lehner Site SMU-164 R_Date Lehner Site SMU-168 R_Date Lehner Site SMU-340 R_Date Lehner Site SMU-297 R_Date Lehner Site SMU-347 R_Date Lehner Site SMU-308 R_Date Murray Springs SMU-18 _Date Murray Springs A-805 R_Date Murray Springs Tx-1413 R_Date Murray Springs Tx-1462 _Date Murray Springs SMU-27 R_Date Murray Springs SMU-41 R_Date Murray Springs SMU-42 R_Date Murray Springs Tx-1459 R_Date Colby UCIAMS-11342 R_Date Colby UCIAMS-11343 R Date Jake Bluff CAMS-79940 R_Date Jake Bluff CAMS-90968 R_Date Jake Bluff CAMS-90969 R_Date BWD_AA-30454 R Date BWD A-491 R_Date BWD_A-481 R Date BWD A-490 R_Date Domebo AA-825 R_Date Domebo AA-805 R_Date Aubrey AA-5271 Date Aubrey AA-5274 R_Date Agate Basin SI-373 R_Date Agate Basin I-472 R_Date Agate Basin SI-3732 R Date MacHaffie Beta-159167 Date Bobtail Wolf WSU-4444 R_Date Bobtail Wolf WSU-4447 R_Date Mountaineer CAMS 105764 R_Date Mountaineer UCIAMS 11240 R_Date Mountaineer UCIAMS 11241 R Date Indian Creek 1 R_Date Indian Creek 2 R Date Waugh NZA-3602 R_Date Waugh NZA-3603 R_Date Hanson RL-374 R Date Hanson RL-558 R_Date Hanson Beta-22514 R Date Hanson Beta-31072 R_Date Hell Gap A-503 R Date Hell Gap A 504 R_Date Lindenmeier I-141 R_Date Lindenmeier TO-337 R_Date Lindenmeier TO-342 R Date Blackwater Draw A-488 R_Date Blackwater Draw A-492 R Date Bonfire Shelter TX-153 R_Date Bonfire Shelter TX-658 R Date Bonfire Shelter TX-657 R_Date Bonfire Shelter AA-346 R_Date Folsom-CAMS-74655 R_Date Folsom-CAMS-74656 R Date Folsom-CAMS-74657 R_Date Folsom-CAMS-74658 R Date Folsom-CAMS-74659 Start Start of End Folsom R_Date Blackwater Draw A-386 _Date Mountaineer CAMS 105765 R_Date Black Mountain Boundary Transition Plains Clovis/Folsom Start Start of Transition Plains Clovis/Folsom nd End of Transition Plains Clovis/Folsom R Date Domebo AA-811 R_Date Kanorado CAMS-112741 R_Date Kanorado CAMS-112742 R_Date Lubbock Lake Sub Stratum 1b smu-548 R_Date Lubbock Lake Sub Stratum 1b smu-263 R_Date Lange-Ferguson UCIAMS 11345 R_Date Lange-Ferguson UCIAMS 11344 Phase Plains Clovis Sequence Eastern Clovis - Debert and beyond sequential phases Boundary Start Eastern Clovis R_Date Cactus Hill Beta-81589 R_Date Sheriden_CAMS-10349 _____ R Date Hiscock CAMS-30528 _____ R_Date Hiscock CAMS-30529 R_Date Hiscock TO-3194 _ R_Date Hiscock GX 22038 AMS R_Date Shawnee-Minisink Beta 10193 R_Date Shawnee-Minisink Beta 127162 R_Date Shawnee-Minisink Beta-203865 R_Date Shawnee-Minisink UCIAM\$-24865 R_Date Shawnee-Minisink UCIAM\$-24866 R_Date Sloth-Hole SL-2850 Boundary End Eastern Clovis Boundary Start Debert R Date F04-P743 R_Date Vail Beta-207579 _____ Boundary End Debert Boundary Start Bull Brook R_Date Hedden Beta-70668 R_Date Hedden Beta-68806 Boundary End Bull Brook Boundary Start Michaud R_Date Templeton W-3391 R_pate Michaud Beta-15660 R_Date Neponset Beta-7552 R_Date Colebrook Beta-10742 ____ Boundary End Michaud Boundary Start Cormier R_Date Cormier Beta-126645 ____ R_Date Esker Beta-103284 Modelled date (BP) **Eastern Clovis to Debert and Beyond** ### Western Stemmed Start Start of Start 1 End End of Start 1 R_Date BERck-AA-58592 ___ ____ R_Date BERck-AA-58593 R Date BERckAA-58594 ____ R_Date BERck-Beta 195047 -----R_Date BERck-Beta-207009 ____ R_Date Buhl Beta-43055 R_Date Coopers Beta-114949 R_Date Coopers TO-7349 R_Date Coopers TO-7351 ____ R_Date Coopers TO-7352 R_Date Fishbone 'no lab according to l R_Date Fishbone-'FC:L-245 R_Date Handprint 'Beta-21885 R_Date Hatwai Tx-3159 R Date Hatwai Tx-3160 R_Date Hell Gap 'A-500 R_Date Hell Gap 'AA-16600 R_Date Hell Gap 'I-167 R_Date Marmes 'WSU 211 ____ R_Date Marmes 'WSU 363 R_Date Marmes 'WSU 366 R_Date Paisley - Beta 213423 R_Date Paisley - OxA 16376 R_Date Paisley-Beta 171938 _____ R_Date Paisley-Beta 182920 R_Date Paisley-Beta 195908 ____ R_Date Paisley-Beta 213425 ____ R_Date SmthCrk-'birm-702 R_Date SmthCrk-'birm-917 R_Date SmthCrk-'gak-5442 R_Date SmthCrk-'gak-5443 R_Date SmthCrk-'gak-5444b R_Date SmthCrk-'gak-5445 R Date SmthCrk-'tx-1638 models, not all shown here. We tested two versions of the Boundary and Trapezium model proposed by W&S using the average age for each site as well as the individual ages from the sites with no averaging. We also compiled a more liberal set of ages and analyzed that set using both Boundary and Trapezium Models. We also investigated two transition models with data from Western Clovis and Plains Folsom sites and Eastern Clovis-to-Debert-through-Cormier sites to show how Bayesian analysis can be used to picture a series of archaeological phases. Finally, we ran data sets of South American Fishtail and Western Stemmed point sites to evaluate and confirm their contemporaneity with Clovis (Faught 2008). Re-Analysis of the W&S data The Boundary Model using W&S age average for each site produced a marginally adequate A model index of 66. However, averaging the ages from these sites is inappropriate under criteria developed by Ward and Wilson (1978). Using the suite of individual ages from the set of sites compiled by W&S to run a Boundary Model resulted in an even poorer A model index of **55.9**. **RESULTS** The Bayesian analysis in OxCal 4.2 was used to evaluate the span and strength of different The Boundary Model run with W&S individual ages resulted in the Clovis Phase starting between 12,941 calBP and 12,852 cal BP and ending between 12,701 calBP and 12,666 calBP. At 1-sigma, the span of the W&S Clovis Phase was between 153 and 258 years which is less than the 200 to 400 year estimate by W&S. On the other hand, the Bayesian analysis indicates the beginning of the Clovis Phase 300 years later than the W&S estimate of 13,250 calBP and the ending 100 years or more later than their estimate of 12,800 calBP. Both Boundary and Trapezium Models were run with the Liberal set of ages from Clovis sites. The Boundary Model resulted in a beginning between 13,165 calBP and 13,059 calBP and an end between 12,690 calBP and 12650 calBP with an A model index of 85.2. The Frapezium Model had a more robust A_{model} index of 121.6 than the A_{model} index of 96.2 for the Trapezium model using W&S data. The beginning of the trapezium is between 13,322 calBP and 13,181 calBP and the end between 12,684-12,622 calBP. The span of the Clovis Phase in this model is from **464 to 608** years at 1-sigma, approximating W&S at the early end, but extending the Clovis Phase later in time as with the Boundary Model. | Model | Dataset | A _{model} index | Start in
Calendar Years | End in Calendar
Years | Span in
Calendar Yea | |-----------|---------------------------|--------------------------|----------------------------|--------------------------|-------------------------| | Boundary | W&S
averages | 66.2% | 12941-12786 BP | 12775-12644 BP | 0 to 190 years | | Boundary | W&S
individual
ages | 55.9% | 12941-12852 BP | 12701-12632 BP | 153 to 258 yea | | Trapezium | W&S
individual
ages | 96.2% | 13044-12864 BP | 12690-12629 BP | 163 to 352 yea | | Boundary | Liberal
Clovis | 85.2% | 13222-13140 BP | 12644-12587 BP | 499 to 603 yea | Frapezium Liberal 121.6% 13322-13181 BP 12684-12622 BP 464-608 years Map of Sites