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a b s t r a c t

Traditional artifact typologies are typically poorly defined. While several attributes usually help define
a “type,” shape is invariably the most important. Here I report on a study that uses landmark-based
geometric morphometrics to better define three Paleoindian point types from Florida: Suwannees,
Simpsons, and Transitional Side Notched. Bilaterally symmetric specimens were created from the original
artifacts to capture the presumed ideational forms of the points. The shapes of the bases and the entire
points were tested to determine whether the types could be discriminated, and if so which shape was
best at discriminating the types. The results show that the base configurations were best at discrimi-
nating the groups in two different jackknife allocation tests. The entire point shape was less robust due to
the variability in blade shape. The study demonstrates that the three point types can be rigorously
defined in ways that are usable in daily archaeological practice, and that base shape, rather than the
entire shape, is a better discriminator. Further, the study demonstrates the utility of using several
freeware programs for processing and analyzing shape data.

� 2012 Published by Elsevier Ltd.

1. Introduction

North American prehistoric archaeologists routinely discuss the
use of hafted bifaces (referred to here as “points”) as cultural
historical markers (Justice, 1987). These points are often the only
evidence used to identify many archaeological sites and strata. The
use of points as “type fossils” is ubiquitous in both academic
research and cultural resource management. Unfortunately many
of the types are so poorly and broadly defined that the utility of
these definitions is doubtful (Dunbar and Hemmings, 2004; Lenardi
and Merwin, 2010). In many cases the definitions were compiled
from isolated artifacts in the 1950’s and 1960’s (Bell, 1958, 1960;
Bullen, 1975; Cambron and Hulse, 1975; Perino, 1968, 1976; Ritchie,
1971) or single sites (Broyles, 1966; Coe, 1964) using general
descriptive terms. Quantitative descriptions are rare and limited to
a few measurements (e.g., maximum length, width, thickness).
Types based on limited samples of isolated specimens usually fail to
capture the variation in point form due tomanufacturing variability
and resharpening. Appending suffixes such as “-oid” (ex., Folso-
moid) or “-like” emphasize the variability but do not hone the
definitions. Even though these problems are apparent and occa-
sionally discussed (e.g., Kimball, 1996), archaeology as a discipline

has an inertia that keeps it dependent on “type specimens” and
traditional point descriptions Q2.

In this paper I examine the problem of ambiguous point defi-
nitions using three Paleoindian point types from Florida: the
Suwannee, Simpson, and Transitional Side Notched (TSN). TSN
encompasses several varieties, including Greenbrier and Union Side
Notched. These will be referred to as points with the understanding
they could have been used as projectile tips, knives, or both. The
resharpening trajectory for a point is rarely defined, and the final
shape of a point may have little obvious relationship to its pristine
shape (e.g., Goodyear, 1974; Hoffman, 1985). The resharpening
trajectory has not been described for Suwannee, Simpson, or TSN
points so the shape of these points at exhaustion is unknown,
making their identification problematic.

My working hypothesis is that the best way to define a point
type is to focus on the haft, because that is least likely to have been
altered from its original form since manufacture (Ahler, 1971;
Goodyear, 1974; Hoffman,1985; Thulman, 2006). By “original form”

I mean the form of the point when it was manufactured, which
would capture the intent of the point’s maker. The null hypothesis
here is that there is no significant difference between the three
point types under comparison. That is, variation among these point
types is continuous and that types cannot be discriminated in
statistically significant ways. The test of this hypothesis depends
both on finding significant differences among groups and correctly
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allocating points to each group. I examined this hypothesis by using
landmark-based geometric morphometrics (LGM; Adams et al.,
2004; Zelditch et al., 2004) to define the shape of 50 whole
points that were identified to type. Different configurations of
landmarks were used to determine whether the symmetric shape
of the base or entire point was better at correctly assigning points
to their identified types. The effectiveness of category assignment
was tested through discriminant function analysis (DFA) and
canonical variates analysis (CVA) for each configuration. Although
all types were significantly different from one another, jackknife
tests of the performance of the categories showed that the base
configurationwas far superior for correct assignation of specimens.
The discriminatory power of the entire outline was likely less
discriminatory because the blade shapes were not statistically
distinct.

2. Materials and methods

2.1. The allocation of specimens to type

Along with fluted Clovis points, Suwannee and Simpson points
are the most common types associated with the Paleoindian period
by professionals in Florida, although none have been recovered in
a dated context. TSNs are fewer in number in Florida, and unam-
biguous examples have never been reported in a professional
excavation. Suwannees, Simpsons, and TSNs are lanceolates that
are typically unfluted, with concave bases that are ground in the
concavity and along the lateral edges. The standard definitions of
these points are found in Bullen (1975), although others have
commented on them (Daniel and Wisenbaker, 1987; Goodyear
et al., 1983; Purdy, 1981) or proposed new definitions (Dunbar
and Hemmings, 2004). They are known mostly from isolated
finds and rarely from an unmixed stratified site (Daniel and
Wisenbaker, 1987; Dunbar and Hemmings, 2004; Dunbar and
Vojnovski, 2007). Simpsons appear to be rarer than Suwannees,
although that scarcity is impressionistic. Simpsons have been
proposed as an interim form between Clovis and Suwannee, but
they have been excavated with Suwannee points (Daniel and
Wisenbaker, 1987).

Bullen’s (1975) descriptions of the three groups illustrate the
limitations of traditional typologies. All the descriptions are
accompanied by 1e3 simple line drawings (without scale) and
a range of measurements for length, width, and thickness.

Suwannee: A usually large and fairly heavy, lanceolate shaped,
slightly waisted point with concave base, basal ears, and basal
grinding of bottom and waisted parts of sides. Basal thinning
and suggestions of fluting are but rarely present. Workmanship
varies from good to poor. This definition is more specific than
previous contexts (Bullen, 1975:55)
Simpson: A wide bladed, relatively narrow waisted, fairly thin,
concave based, medium to large sized point with grinding on
bottom and waisted edges. Basal ears are present but are not as
developed as in the Suwannee point. Basal thinning is present
but, also, is not well developed. Workmanship is good to fair.
(Bullen, 1975:56)
Greenbriar (TSN variety): A heavy (thick), relatively broad,
usually medium sized, dominantly bifacially beveled, side
notched, trianguloid point with straight or slightly concave or
convex base.. Width of base is equal to, or greater than, width
of blade. Blades are slightly excurvate but may be straight. .
Length of hafting area is about one-quarter of the total length of
the point. Basal corners tend to be rounded or eared. . (Bullen,
1975:53)

Union Side Notched (TSN variety): A fairly thick, medium sized,
bifacially beveled, lanceolate shaped point with shallow side
notches immediately above rounded basal corners and grinding
of basal edges and of notches. (Bullen, 1975:54)

In the 30-plus years since Bullen’s work, there has been little
progress made on refining these types and making definitive
statements about what is truly similar and different between
Suwannee and Simpson points. For example, I asked eight profes-
sional and avocational archaeologists with experience in differen-
tiating these point forms to sort 65 actual-size color images of
lanceolate points found in isolated contexts as “Suwannee,”
“Simpson,” or “Other.” On only a few of the points was there
complete agreement, so type designations were made based on
a clear majority of opinion. Twenty-six points were identified as
Suwannee, 17 as Simpson, five as Other, which, based on comments
of some of the analysts, I grouped within the general definition of
TSN. No agreement was reached on 15 of the points, and thesewere
designated “Unknown.” The images were drawn from a set of about
750 images of unfluted Paleoindian points from Florida, most of
which were broken (Thulman, 2006). The images were collected
from private and public collections in Florida using a flatbed
scanner, which had an error of <0.1 mm (Thulman, 2006). Images
were scanned at 600 dpi. The lengths of lateral grinding were
measured to the nearest millimeter, and thickness along the
midline and location were also recorded.

While point typology is based on several factors, the most
important is shape, and the analysts commented that they relied on
such aspects of shape as the shape of the ears, depth of the basal
concavity, and the relationship between the shapes of the haft and
blade. I focused this analysis on three parts of the point shape: the
entire outline, the haft, and the blade (Fig. 1). The definition of “the
haft” is not necessarily self-evident, so here the distal terminus of
lateral grinding marked the transition from the base to the blade
(landmarks 1 and 11 in Fig. 1). Points were used that were relatively
well preserved. Points were rarely perfectly preserved; most have
some damage, such as a missing ear tip or blade tip or flakes

Fig. 1. Landmark locations used in the analyses. Entire point outline configuration:
LMs 1e16; base configuration: 1e11; blade configuration 1 and 11e16.
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removed from the blade margin. Thus, some compensation was
made in digitizing the specimens to remedy obvious damage by
estimating the location of the edge without the damage (described
in section 2.3). Further, the grinding length was rarely the same
on both basal edges, and sometimes they were substantially
different (i.e., >5 mm). I decided that only specimens that differed
5 mm or less in the lengths of lateral grinding would be included.1,2

Thus, on specimens with grinding of different lengths, the limits
of the haft would not likely to have been perpendicular to the
bilateral axis of the point. (It is possible the haft limit could be
perpendicular if one ear was shorter than another.) This difference
was eliminated by creating bilaterally symmetric specimens, as
described in Section 2.4Q3 .

2.2. Landmark geometric morphometrics

The development of LGM over the last two decades has focused
on the analysis of biological systems, mainly understanding
ontology, speciation, and evolutionary processes. Most of the
explanatory literature and methodologies were developed to work
with biological and paleontological specimens (e.g., Hammer and
Harper, 2006; Zelditch et al., 2004). The foundation of LGM lies in
the theory of shape developed by Kendall (1984), Bookstein (1991),
and others (Adams et al., 2004). A specimen of interest can be
characterized in two or three dimensions as a combination of
shape, size, rotation, and position, so prior to analysis of shape all
information related to size, shape, rotation, and position must be
removed. The shape of a specimen (biological or archaeological)
lies in a curved multi-dimensional “shape space” that contains all
shapes of the same dimension. The shapes in shape space are
compared mathematically by alignment through superimposition,
which eliminates the non-shape components, and projected onto
a linear (flat) tangent plane (Rohlf, 1999). The projection is a linear
approximation of the shape in shape-space but allows the use of

Euclidean geometry and standard mathematics, including tradi-
tional multivariate statistical analysis of the shapes (Slice, 2005).

Several approaches to capturing and analyzing entire two
dimensional shapes have been used by archaeologists, including
elliptical Fourier transformations (Ioviţ�a, 2009, 2010), eigenshape
analysis (Costa, 2010; Tompkins, 1993), and landmark-based anal-
yses (Buchanan, 2006; Buchanan and Collard, 2007; Lenardi and
Merwin, 2010). In the last few years, archaeologists have begun
using LGM more frequently for a variety of purposes (e.g., Archer
and Braun, 2010; Buchanan, 2006; Buchanan and Collard, 2010;
Buchanan et al., 2011; Cardillo, 2009, 2010; Lenardi and Merwin,
2010; Lycett et al., 2006; Monnier and McNulty, 2010; Shott and
Trail, 2010; Smith and Smallwood, 2011), and its use should
becomemore common for several reasons. It is relatively easy to do.
Most of the statistical analyses in this research were facilitated in
user-friendly freeware programs that do not require “steep learning
curves” to use (Hammer, 2010:357). Several freeware computer
programs are readily available and well documented that facilitate
the use of LGM for artifact analysis. All of the digitizing and image
analysis in this paper was done with freeware computer programs:
the tps program suite, developed by F. James Rohlf; IMP suite
(Integrated Morphometric Program v.7), developed by H. David
Sheets (Zelditch et al., 2004); and MorphJ v. 1.03c, developed by
C. P. Klingenberg (2011).3 The software can analyze the shapes
and illustrate the results inways that are intuitive. Thus, the analyst
can see how shapes differ through thin plate spline deformations,
average images, and graphical displays of superimpositions.
However, while it is easy to generate data and produce results
LGM should not be approached without an understanding of its
theoretical underpinnings and limitations (Zelditch et al., 2004).

2.3. Landmark placement

Comparing shapes in LGM requires the designation of homolo-
gous points on each specimen. The choice of landmarks (LM) in
biological specimens has been extensively discussed (Bookstein,
1991, 1997; Zelditch et al., 2004). Zelditch et al. (2004) describe
five criteria for choosing proper landmarks. Foremost, the land-
marks must be homologous. In addition, their relative position
among specimens should not change, and theymust lie in the same
plane, provide adequate coverage of the shape, and be reliably
repeatable.

Archaeologists have noted the difficulty in identifying homolo-
gous points on artifacts, which typically do not have many unam-
biguous landmarks and rarely have homologous points interior to
the outline of the object (Ioviţ�a, 2010; Lycett and Chauhan, 2010;
Shott and Trail, 2010). Two landmark schemes commonly used by
biologists (Bookstein, 1991; Dryden and Mardia, 1998) rank the
quality of landmarks, in part, on the biological significance of the
location, such as the juncture of different tissues (e.g., suture
intersections) that arise from a common evolutionary patterning.
Both schemes for biological landmarks have limitations when
applied to artifacts (Barceló, 2010), and analysts should focus on
locations of cultural significance that have structural correspon-
dence between and within groups, which usually are limited to
one or more salient aspects of shape (e.g., functional attributes
(Shott and Trail, 2010:199)). While biological specimens can often
be adequately described with landmarks on the interior and edge
of the specimen, archaeological specimens are usually better
conceptualized as a combination of curves and landmarks on
only the outline. Curves without identifiable landmarks can be

Fig. 2. CVA plot of the entire point configuration.

1 The differential grinding length implies that this was intentional and probably
functional. On some points it is apparent they were used as knives with the binding
backing the blade. The implications of this configuration are presently being
explored with some replication blades, handles, and hafts.

2 The difference in the length of lateral grinding was clearly intentional. Points
with different grinding lengths most likely served as knives rather than projectile
tips.

3 All these programs (and many others) can be downloaded from the SUNY Stony
Brook morphometrics website http://life.bio.sunysb.edu/morph/index.html.
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incorporated into LGM with semi-landmarks that define the curve,
although that approach was not employed here. The curve, rather
than its points, becomes the homologous structure (Sheets et al.,
2006). Unlike biological specimens, few artifact landmarks will be
single locie they will more likely define a dimension (maximum or
minimum width), the endpoints of a curve, or intersection of two
curves e and virtually all landmarks will lie on the outline of the
artifact.

In this research, the salient aspects of the outlines were
captured with the LM locations indicated on Fig. 1 are described in
Table 1. These LMs would be classified as Bookstein LM Types II or
III. The proper classification of LMs seems less important than
ensuring they adequately define the structures of interest and are
replicable (Shott and Trail, 2010:199). Using a single LM configu-
ration to characterize shape for all projectile point types might be
ideal but may not be possible or appropriate for all research
designs. For example, Buchanan and Collard (2007) and Buchanan
et al. (2011) used the shareware program MakeFan to place
evenly spaced LMs along the outline of Paleoindian lanceolate
points, setting primary LMs at the tip and junction of the blade and
base edges. However, I found that the MakeFan approach used by
those researchers did not adequately capture the more complex
shapes of the points in my study. Two additional considerations
will be commonly encountered with archaeological specimens:
damaged outlines and ideational forms. Since edges and tips of
tools are commonly damaged or missing, it may be appropriate to
infer where the LM would have been placed but for the damage.
Because I am interested in how the points differed when made,
rather than how they were used (Buchanan and Collard, 2007),
I focused on the ideational form, i.e., the maker’s mental template
(Deetz,1996), of which the specimens are approximations. I assume
the ideational form was bilaterally symmetric, so I created
symmetric forms of the hafts, blades, and entire outlines.

Here, LMs were placed on the images using the freeware tpsDig2
v.2.16 (Rohlf, 2010). As Table 1 illustrates the location of LMs can be
ambiguous, which can adversely affect the requirement for
homology and replication. Sixteen LM were used for the entire
outline, seven for the blade, and eleven for the base (LMs 1 & 11
were used for both the blade and base configurations; Fig. 1).4

Visual inspection of the points and comments from the analysts
indicated salient variationwas present in the shape and orientation
of the basal ears, so several landmarks were placed to capture that
variation (LMs 3, 4, 5 and 7, 8, 9 in Fig. 1). Also, the curves that
define the basal and lateral margins of the haft and curve of the
blade seemed significant, so I placed landmarks at and interme-
diate to the maximum and minimum loci of those curves. Once the

entire outlines were completed, tpsUtil v.1.46 (Rohlf, 2010) was
used to reorder the arrangements of LMs for the blade and base.
The distal end of the base (and the proximal end of the blade) was
defined by the extent of lateral grinding. Then, artifacts in the three
configurations (entire outlines, bases, and blades) were super-
imposed through generalized Procrustes analysis, which preserves
the shapes but eliminates size, rotation, and translation (Rohlf,
1999). All the analyses were conducted on these data without
further transformation, other than to create bilaterally symmetric
points.

2.4. Bilateral symmetry

I created symmetric points by reflecting the LMs across the axis
of symmetry and averaged the LM locations (Mardia et al., 2000),
which created symmetric outlines. Using symmetric shapes is
justified here, because a fundamental assumption in this research is
that for these points, the makers intended to create bisymmetrical
tools, even though perfectly bisymmetric tools may never have
been made. That assumption would not be appropriate in other
research designs, and I do not advocate its use in all instances.

Symmetry is created by orienting the shapes along a midline. In
this case the midlines were defined by LMs 6 & 14 for the entire
outline, 6 & A for the base, and 14 & A for the blade (Fig. 1). In
essence the shape is reflected across the midline “by multiplying
one of the coordinates of all landmarks by �1 (e.g., all x-coordi-
nates)” (Savriama et al., 2010:45). The corresponding LM coordi-
nates are averaged, and a new, symmetric shape is created. In this
case, the corresponding LMs are listed in Table 1 and connected by
an ampersand (ex., LMs 1 & 11). Both lmedit7a (an IMP program)
and MorphoJ will produce symmetric specimens with average LM
coordinates.5 Using symmetric points eliminates the problems that
could be caused by asymmetric specimens and small sample sizes.
For example, if by chance the images of asymmetric specimens
were oriented so that the longer ears were all on the left side of the
image, the analysis might find statistically significant differences
among groups that captured that anomaly of digitization, rather
than culturally significant aspects of shape. Creating symmetry can
smooth out irregularities in the outlines caused by damage. In this
case it also eliminated the potential problem in the delineation of
the extent of the haft and blade caused by differential lateral
grinding. In sum, LM placement andwhether to capture asymmetry
in the outline or “fix” it by making the image symmetric depends
on the research question.

An option, not pursued here, that avoids the need to create
bilaterally symmetric images would be to use half-images in the
analysis (e.g., LMs 6e14 in Fig. 1 for the entire outline configura-
tion). However, this would require choosing the most “represen-
tative” half of the specimen, which is not always obvious.
Nevertheless, using half-images would allow the inclusion of
broken specimens that could not otherwise be used. A second
option would use only half the created symmetric image.

2.5. Statistical analysis

Several tests were implemented to determine which outline
best discriminated the a priori groups and was most successful in
correctly allocating specimens to the appropriate group. First, the
groups were analyzed through a canonical variates analysis (CVA)

Table 1
LM placement on a typical specimen. The LMs were placed in TpsDIG2 on the edge of
the image.

LM # Location

1 & 11 At the distal extent of lateral grinding
2 & 10 Defines the minimum basal width
3 & 9 Widest points on the ears
4 & 8 Distal points of the ears
5 & 7 The point at which the ear meets the basal curve
6 Equidistant between points 3 & 9
12 & 16 Defines the maximum blade width
14 Blade tip
13 & 15 Equidistant between tip and points 16 & 12
A Temporary point to define axis of bilateral symmetry

4 Several different combinations of LMs were tested for the base (18, 17, and 13),
but 11 LMs performed best at correctly discriminating these types.

5 lmedit7a requires that two endpoints of the axis of symmetry be designated. LM
A in Fig. 2 filled that requirement. Once a symmetric specimen was created, LM A
was deleted and the analyses were run on the 11 LM configuration for the base and
7 LM configuration for the blade.
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and discriminant function analysis (DFA) to evaluate the cohe-
siveness of the grouping. Bartlett’s test, which is based on a MAN-
OVA testing the hypothesis of differences among the groups,
was run on the initial group allocations to determine the number
of significant CVA axes (Zelditch et al., 2004). The efficacy and
robustness of the groupings were evaluated through a boot-
strapping assignment and cross-validation methodology. Finally,
the 15 points classified as “Unknown” were examined with CVA
and tested through the bootstrapping assignment methodology.

Both DFA and CVA maximize the separation between groups
identified by the analyst, but the results are not necessarily statis-
tically significant. DFA identifies the linear combination of multi-
variate data that maximizes separation between the groups and
projects the result onto a single axis in the form of a histogram. DFA
determines group membership by measuring the distance of an
individual specimen from the group mean. Thus, while the group
meansmay be statistically different in aMANOVA, there may not be
a good separation of groups in DFA because the within-group
variance is large. In short, a good separation of groups in DFA
does not mean the groups are significantly different in multivariate
means or that significantly different means will give good separa-
tion in DFA. The same is true for CVA, which is DFA for more than
two groups.

The effectiveness of groupings of artifacts is only partly tested by
a MANOVA, since the within-group variability of artifacts defining
the group can be large. The test of effectiveness for DFA and CVA is
their ability to properly allocate specimens by measuring their
distance (usually using Mahalanobis distances) to the group means
(Sheets et al., 2006). Here, the CVA analysis was done in CVAGen7a,
which computes the partial warp scores to the common references
(the average of all members of the group), conducts the MANOVA

and calculates the Mahalanobis distances from the partial warp
scores of the individuals. The initial validation test simplymeasures
the distances of all specimens to the group means and reports the
allocations. This tends to inflate the effectiveness of the CVA since
the member specimens were used in calculating the mean. A
second approach uses a jackknife procedure that removes one
specimen from the dataset, recalculates the means, treats the
removed specimen as an “unknown,” and assigns it to the closest
group mean. The results of this jackknife procedure are reported in
Section 3.

An assignments test is available in CVAGen7a that assesses the
probability of the group assignment of a single specimen (Nolte
and Sheets, 2005). A Monte Carlo simulation is employed to
create a model of random variation around the group mean, and
this model is used to determine the likelihood that a specimen’s
distance from the group mean is consistent with the null
hypothesis of random variation around the mean. A p-value of
<0.05 means the assignment is doubtful. Here, the assignments
test was used to iteratively reallocate specimens until the group
membership became stable (i.e., the assignments test no longer

Table 2
Results from the significant Bartlett’s tests for differences among Suwannee,
Simpson, and TSN for the three configurations.

Configuration Axes Wilk’s L X2 df p-value

Entire Outline Not significant for the first axis
2 0.0400 107.8303 56 0.0000

Base Outline 1 0.0559 111.0308 36 0.0000
2 0.3952 35.7427 17 0.0049

Blade Outline Not significant for the first axis
2 0.3465 45.0476 20 0.0011

Fig. 3. CVA plot of the base configuration.

Fig. 4. CVA plot of the blade configuration.

Fig. 5. CVA plot of the blade configuration with the 15 Unknown points plotted based
on their CVA scores.
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found that a specimen was misallocated). For example, if the
first assignments test indicated that a specimen designated as
“Suwannee” was closer to the “Simpson” mean shape, then that
specimen was reallocated to the Simpson group, and the assign-
ment test was run again. Stable groups were reached within two
iterations, meaning the assignments test for each configuration
was run no more than twice before group members no longer
needed to be reallocated. The assignment test can also estimate
the probability of group membership of unknown specimens,
which was used here for the 15 Unknown points in the initial
group allocation. The test assigns the Unknown points to one of
the a priori groups or to a Group 0, which means the specimenwas
highly unlikely (p-value < 0.001) to belong to any of the desig-
nated groups.

A second jackknife test is available in CVAGen7a to evaluate the
effectiveness of the assignments test, which allows more than one
specimen to be removed at a time. By sequentially removing larger
percentages of the specimens (ex., 1%, 10%, 30%, 50%) the cohe-
siveness of the group can be assessed. If a LM configuration
continues to correctly identify specimens as more specimens as
removed, then we can infer it is robust. The results of the second
jackknife test are reported as: % correct and significant, % correct
and insignificant, % incorrect and significant, and % incorrect and
insignificant. The insignificant results reflect outliers that were
nonetheless assigned to a group.

3. Results

CVAswere run on all LM configurations. The Bartlett’s test found
significant differences among the initial three group membership
allocations for the base configuration, but the entire outline and
blade configurations were not significant for both axes (Table 2).
The distinction among the groups can be seen in the CVA plots
(Figs. 3e5). Of the three plots, the base configuration (Fig. 3) best
discriminated the groups, while there was no clear discrimination
based on blade shape (Fig. 4). The DFA results of the three groups

showed the blade configuration did not distinguish between TSNs
and Suwannees or Simpsons (Table 3; Fig. 4).

The jackknife replacement test results for all LM configurations
on the initial group membership assignments show the relative
efficacy of the ability of the groups to accurately allocate
membership (Tables 4e6). Of note are the overall success rates of
the entire point and base configurations; the entire point config-
uration had an overall success rate of 78%, whereas the overall
success rate of the base configuration was 66%. The jackknife
replacement tests were re-run based on the final stable group
assignments, and the results are reported in Tables 7 and 8. With
stable groups, the overall successful allocation rate for the base
configuration rose to 90%, whereas the overall success rate for the
entire point configuration fell to 70%. The change in percentages
represents an increase of 17 correct identifications for the base
configuration and a decrease of 4 correct identifications for the
entire point configuration.

Jackknife assignment tests were run on the entire point and base
configurations. Tables 9 and 10 show the results for 1000 jackknife
iterations for the 1, 10, 30 and 50% removals. Several things are
apparent. For the base configuration, significant successful results
for the 1% removal (five specimens at a time) is in good agreement
with the single-specimen jackknife removal test (Table 5): 88.2%
and 90%, respectively. In contrast, the entire point configuration is
in fair agreement with the single-specimen jackknife removal test
(Table 6): 61.8% and 70%, respectively. Second, the predictive power
of the entire point configuration (measured by the percent of
successful significant assignments) drops more quickly as larger
percentages of the group are removed and the mean recalculated.
At the 30% removal rate, the entire point configuration has
a significant success rate of only 23%. In contrast, the base config-
uration generally maintains its significant success rate past the 30%
removal rate. Even when half the specimens are removed, the
base configuration has better predictive power than the entire
point configuration at the 30% removal. Similarly, the significant
false allocations are minimized in the base configuration, almost
half the number for the entire point configurations. Finally, the

Table 3
Results for the Mahalanobis distance between means of the TSNeSuwannee, and
TSNeSimpson groups for the blade configuration.

TSNeSuwannee TSNeSimpson SuwanneeeSimpson

Mahalanobis distance: 1.8338 2.0641 1.7659
T2: 14.2673 16.4609 32.9873
p-value: 0.0563 0.0638 0.0003

Table 4
Jackknife replacement results for base configuration, with 66% overall correct
assignments.

Type Suwannee Simpson TSN % correct

Suwannee 17 8 1 65%
Simpson 7 12 0 63%
TSN 1 0 4 80%

Table 5
Jackknife replacement results for entire point configuration and the initial group
membership assignments. 78% overall correct assignments.

Type Suwannee Simpson TSN % correct

Suwannee 22 3 1 85%
Simpson 4 14 1 74%
TSN 1 1 3 60%

Table 6
Jackknife replacement results for blade configuration and the initial group
membership assignments. 54% overall correct assignments.

Type Suwannee Simpson TSN % correct

Suwannee 14 5 7 54%
Simpson 4 12 3 63%
TSN 3 1 1 20%

Table 7
Jackknife replacement results for base configuration and the final stable group
membership assignments. 90% overall correct assignments.

Type Suwannee Simpson TSN % correct

Suwannee 28 0 1 100%
Simpson 2 13 1 81%
TSN 1 0 4 80%

Table 8
Jackknife replacement results for base configuration and stable membership
assignment. 70% overall correct assignments.

Type Suwannee Simpson TSN % correct

Suwannee 18 8 1 67%
Simpson 4 13 1 72%
TSN 1 0 4 80%
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non-significant allocations are also informative, since they repre-
sent correctly or incorrectly allocated outliers. The number of non-
significant results is kept to a minimum in the base configuration,
indicating less variance among the group members (i.e., fewer
outliers).

Fig. 5 is the CVA for the base configuration including the 15
Unknown points. The CVA results are confirmed in the assignment
test, which assigned one to TSN, eight to Suwannees, zero to
Simpsons, and six as unaffiliated. A review of the images of the
unaffiliated Unknowns supports most of the allocations in Fig. 5;
points that are located between the Suwannee and Simpson groups
have shape aspects that are intermediate between those types.
Further, several of the unaffiliated Unknowns are unlike specimens
from the a priori groups.

4. Discussion

The jackknife assignment tests reveal that the base configura-
tion better discriminates the three groups of Paleoindian points
than the entire point configuration. In addition, the base configu-
ration is more cohesive than the entire point configuration,
meaning there is less within-group variation, and it remains
a better predictor of proper group assignment, even with smaller
data sets. The reason appears to lie in the wide overlap in blade
shape among the groups (Fig. 4). When blades are resharpened, the
ratio of length to width typically changes (i.e., the blade get shorter
at a faster rate than its width), modifying their shapes in addition to
their sizes. Further, almost half the time the blades were mis-
allocated to group. Additionally, the variation is high within the
entire point configuration (as demonstrated by the drop in signif-
icant correct allocations and high percentage of insignificant allo-
cations in Table 9). Thus, the working hypothesis that the base
should be the best predictor of shape is supported by these
analyses.

The day-to-day utility of the method employed here depends on
whether archaeologists can use the results as a handy reference for
point identification. CVA plots and assignment tests are not prac-
tical for quickly performed point identifications. However, averaged
images of group specimens can be created and do provide a work-
able reference for the average or typical point shape in a group.
Fig. 6 illustrates averaged images of the artifacts for each group,
using the base configuration. The imageswere created in tpsSuper v.
1.14. Only the bases were superimposed so the blade sizes are
variable. These figures also illustrate the earlier conclusion that
variable blade shapes affected the utility of the entire point
configuration for accurate member allocation. Regardless, the
method is a vast improvement on the traditional impressionistic
artifact descriptions and cursory linear measurements, angles, and
ratios (Shott and Trail, 2010).

Table 9
Jackknife estimates of assignment performance for entire outline (1000
replications).

% left out in jackknife 1 10 30

% correct 61.8 55.7 23.3
% correct n.s. 13.7 14.9 32.5
% false 17.2 21.0 20.8
% false n.s. 7.3 8.4 23.4

Table 10
Jackknife estimates of assignment performance for base outline (1000 replications).

% left out in Jackknife 1 10 30 50

% correct 88.2 86.5 72.7 35.7
% correct n.s. 2.0 2.9 9.9 28.8
% false 9.8 10.0 13.8 17.6
% false n.s. 0.0 0.6 3.7 17.9

Fig. 6. Average images created in tpsSuper using the base configurations. Suwannee (A), Simpson (B), TSN (C).
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5. Conclusion

The process employed here demonstrates the ability to inves-
tigate three issues that are integral to establishing more definitive
typologies. First, the LGM method provides a means to determine
whether in fact two or more groups of points, or other artifacts
distinguished by shape, can be rigorously distinguished. Rather
than relying on impressionistic descriptions and traditional
measurements, artifact shapes can be defined in a way that allows
unknown specimens to be assigned. Second, the use of symmetric
specimens created from images of artifacts that were presumably
intended to be bilaterally symmetric better captures the maker’s
ideational model and eliminates asymmetries introduced into
shape by damage and manufacturing errors. Third, the jackknife
and assignments tests allow exploration of culturally important
issues of difference and affiliation. This level of analysis would not
likely be possible using typical standard morphometric measures.
The Unknown assignments present a cautionary note, however:
the allocations based on LGM should not be slavishly accepted.
LGM can identify significant differences in artifact shapes,
but it cannot determine whether the differences have cultural
significance.

Regardless of the ease of use of the freeware capable of
analyzing artifact shapes, analysts must use caution, since they are
all specifically developed for analysis of biological specimens. The
general rules of LM choice cannot be strictly applied to artifact
analysis. The choice to create symmetric specimens will depend on
the research questions. Nevertheless, traditional morphometric
analysis has been limited to linear measurements, angles, ratios,
areas, principle components, and the like (Adams et al., 2004).
These traditional descriptors are frustratingly limited in their
ability to capture all the relationships in a shape through univariate
and multivariate statistics. Frequently, an analyst can see differ-
ences in morphology but cannot find the appropriate measures
to define that difference in a way that allows for statistical ana-
lysis. Geometric morphometrics has the promise of overcoming
the limitations in traditional morphometrics by capturing and
describing shape in a way that allows mathematical analysis of the
data and visualization of the ways that shapes differ (Adams et al.,
2004; Lycett and Chauhan, 2010). It can also help analysts parse
large datasets and create usable group definitions based on criteria
that have cultural salience and are statistically rigorous, rather than
impressionistic.

The analysis presented here does not resolve questions of
chronology or function (Rink et al., in press) for these points.
However, it does confirm that the variation is not continuous in the
specimens, i.e., that these traditional point types can be defined as
three statistically significant different groups that can be discerned
from specimens that vary in blade length and blade shape. Addi-
tionally, LGM provides useful tools for visualizing these shape
groups (Fig. 6) and statistically sound approaches to the allocation
of unknown specimens to known groups.
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