

Check for updates

The Magnificent Seven: Marine Submerged Precontact Sites Found by Systematic Geoarchaeology in the Americas

Michael K. Faught^{a,b} and Morgan F. Smith^{b,c}

^aAnthropology, University of Arizona, Tucson, AZ, USA; ^bArchaeological Research Cooperative, Tallahassee, FL, USA; ^cDepartment of Social, Cultural, and Justice Studies, University of Tennessee, Chattanooga, TN, USA

ABSTRACT

There are significant challenges to answering questions of Native American precontact history with data from sites in marine submerged continental shelf settings. We find seven published examples of projects in the Americas that encountered archaeological sites through systematic and phased geoarchaeological research. These seven projects share similar characteristics: recognition of archaeological potential, mapping and learning paleolandscape configurations, modeling where past human behaviors should be expected and, importantly, testing those places underwater. We summarize the approaches and outcomes of each project, discuss similar characteristics, and recommend additional strategies for future discoveries.

ARTICLE HISTORY

Received 16 December 2019; Accepted 11 December 2020

KEYWORDS

Continental shelf archaeology; cultural resource management; paleolandscapes; remote sensing; underwater archaeology

Introduction

In the Americas there is a short list of projects using systematic, phased geoarchaeological research methods to find precontact sites in marine submerged continental shelf settings. We compiled data on seven published research projects that followed similar trajectories to success (Table 1). First, recognition of archaeological potential and understanding paleolandscapes by mapping and study. Then, modeling site locations from local terrestrial analogs, and, most importantly, testing models by underwater investigation and sampling paleolandscapes directly. The projects are in three regions of North America: Pacific Northwest Coast, Baja California, and Gulf of Mexico (Figure 1). Our goal is to show how the researchers of these seven projects found sites through methodical and phased research, overcoming shared challenges of obtaining resources to map and study marine submerged landscapes, getting out to sea, and working underwater. Regardless of the geographic and environmental differences of these projects, note that each begins with the premise that submerged precontact sites are found and sampled as methodically as those terrestrially, given that the field work is technologically and logistically constrained. Each of these seven projects focused on two genres of information: past landscape configurations and past human behaviors expected in those settings.

In this paper we describe each project with regard to mapping and modeling paleolandscapes, modeling human behaviors, and testing and analyzing sediments to find or

42

43

44

45

46

54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	

47

48 49

Project	Funding	Time on site	Project Funding Time on site Setting Depths	Depths	Methodology	Age	Site type
Gulf of Mexico: PaleoSabine	MMS, US Parks Service, BOEM	2 Field seasons	Buried in marine sediments	12 m water depth ∼5.5 m into substrate	Model site location with terrestrial analogs. Remote sense for buried features. Core paleochannel marcins, levees	Early Holocene by radiocarbon	Possible camp and midden
Belize: Wild Cane Cay, Punta Ycacos Lagoon	NSF, EarthWatch	Annual field seasons 1985-present	Shallowly buried structures and ceramic vessels in younger mangrove peat	2 m water depth 1 m into substrate	Boat survey looking in water, pedestrian, then floating survey, mapping. Excavation along transects, deeper sites with surface supplied air. Core peat to 7m; SONR from AUV,	Late Holocene Classic Maya by radiocarbon, and diagnostics	Pole and thatch salt works
Gulf of Mexico: PaleoAucilla, PaleoEconfina	Private, EarthWatch, NSF, State of Florida	>10 field seasons PaleoAucilla	Exposed landscape, pocketed karst with sediment packages locally	2–5 m water depth 1 to 3 m into substrate	Digitized batty, Digitized batty, homemade DEM from navigation charts to find paleochannels. Diver survey and controlled hand-fan collections. Induction diedge excavations, coring in	Late Pleistocene Early Holocene Middle Holocene by diagnostics	Clustered chipped stone tools and debitage, quarries, and shell middens
British Columbia: Montague Harbor	Parks Canada, British Heritage Trust	Four field seasons	Buried, bedded midden deposit with food remains, organic and lithic artifacts	~4 m water depth 2.8 m into substrate	parecularine. Previous excavations at high waterline, augers show similar strata continue offshore. Excavation of two 2×2 m units by air lift 3 8 m	Middle Holocene Late Holocene by radiocarbon	Intertidal midden
Pacific Northwest Coast: Werner Bay, Herzte Strait	Parks Canada, Canadian Geological Survey, CRM	More than 10 Field seasons	Exposed rocky paleochannel terrace	53 m water depth 0.5 m into substrate	by an int 2.0 m. Multibeam used for surface mapping, dam bucket grab samples. Diver surveys.	Late Pleistocene by sea level	lsolated artifact
Gulf of Mexico: Tampa Bay, Hillsborough Bay	CRM	\sim 10 days	Buried in marine seds	3.3 m water depth $\sim 4 \text{ m}$ into substrate	Buried Paleochannel margin from subbottom profile data and local site distributions. Monitor material from hydraulic dredge	Middle Archaic by diagnostics	Possible camp
Baja, México: Isla Espiritu Santo	National Geographic and NOAA	Three field seasons	Exposed rocky landscape	∼20 m water depth 0.9 m into substrate	Hommade DEM with echosounder, side scan Sonar mapping. Testing by diving and hand fanning, small air lift.	Unclear early Holocene by sea level very late Holocene by radiocarbon	Probable midden

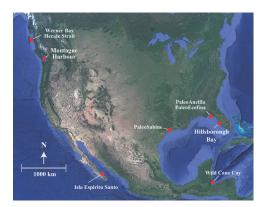


Figure 1. Locations of seven projects that found submerged precontact sites by methodical, phased research.

perceive "sites" (i.e. material evidence of human behavior). We discuss avenues of funding and different aspects of the projects and then appraise the evidence from each project, evaluating whether unequivocal artifacts are present, whether the geologic context is secure, and if there are radiometric ages associated to frame both (Haynes 1969). We conclude by discussing promising projects in development and observe that evidence for first people's early coastal migration in the Pacific Northwest Coast is absent. We order the projects as they occurred.

PaleoSabine 1977–1986

93 94

95

96

101 102

103 104

105

106 107

108

109

110

111

112

113

114 115

116 117

118

119

120

121

122

123

124

125

126

127

128

COLOR

<mark>Online</mark> / B&W in

Print

The earliest example of systematic, phased research set a precedent for submerged precontact studies in the Americas. Between 1976 and 1986, Coastal Environments, Inc. (CEI) was contracted to develop survey and testing guidelines for precontact cultural resources. These guidelines were intended for Gulf of Mexico cultural resource management (CRM) surveys using petroleum industry remote sensing data. The CEI team designed and carried out a research project with three phases in the PaleoSabine channel, offshore between Texas and Louisiana (Figure 1). The approach was to model, based on terrestrial analogs, localities where Native Americans likely lived, such as river channel terraces and levees. Next, they remotely sensed for such locations offshore, and last, they tested those identified locations by vibracoring specific targets (CEI 1977, 393; Gagliano et al. 1982; Pearson et al. 1986, 2014)

CEI geoarchaeologists collected sub- track lines offshore and then plotted reflector positions and depths to construct contour maps of buried surfaces. CEI then collected 20 vibracores in a crisscrossing fashion over a buried paleochannel with levee and terrace features to test the paleolandscape models inferred from these data (Pearson et al. 2014, 61). The seafloor depths were ~ 12 m and cores, dropped from a 120 ft research vessel, penetrated sediments between 5.5 and 10.6 m.

136CEI geoarchaeologists employed analytic methods developed by Gagliano et al. (1982,13794–109) to process small-volume sediment samples from the cores. The methods138include particle size and geochemical analyses, as well as "point counting" particle type

studies. There were two important findings from this 1982 study about the recognition
of submerged precontact sites. The first is the low probability of encountering artifacts
from a core, even when collected within the bounds of a known archaeological site. The
second finding is that sites are indicated from point counting by particle types and
diversity (Gagliano et al. 1982, 99–107).

Evidence for past human presence along the PaleoSabine came between 6 and 7 m below marine sediments from multiple cores. The evidence included a bed of disarticulated shell from the paleochannel margins and "charred wood and vegetation, nut hulls, seeds, fish scales, and bone from fish, reptiles, birds, and small mammals" from the paleolevee. Geochemical analysis indicated increased phosphorous content in the levee sediments, also consistent with human presence. *Rangia* shell from the shell bed produced an age of ~9000 cal BP (Pearson et al. 2014, 63). This near-coastal setting is consistent with eustatic sea-level estimates of marine transgression at the location soon thereafter (Siddall et al. 2003). Evans (2020) continues this research around the PaleoSabine with forays to test by coring targets identified from CRM projects and data from petroleum industry surveys.

Belize 1985–Present

144

145

146

147

148

149

150

151

152

153

154

155 156

157 158

159

160

161

162

163

164

165

166

167

168

169

170

In Belize, in the mid-1980s at Wild Cane Cay, McKillop (1995, 2002, 2005a) recognized late Classic period Maya materials (AD 600–900) were flooded by groundwater and she reasoned that sea levels rose and sites of that age, and possibly earlier, should continue offshore (Figure 1). The sites McKillop found offshore are massive salt production facilities (McKillop 2019, 2002; McKillop et al. 2019). To map features and reach tests units, researchers floated on air mattresses, with masks and snorkels in ~1 m water to avoid damage to the peat substrate and structures (McKillop 2005b). Thousands of mapped posts defined submerged pole and thatch building outlines. Posts and associated briquetage (ceramic vessels used for salt production) were marked and mapped with a total station. Three-dimensional projections of structures and past landscapes are made from these data. Through-water drone photography is used to identify features and places for testing operations (McKillop 2002). Other remote mapping methods include side-scan sonar remote sensing by autonomous underwater vehicle (AUV).

171 Initially, McKillop (2005a, 2002, 1995) excavated shovel test pits into peat around 172 Wild Cane Cay by wading, confirming the model that in situ deposits continued off-173 shore. Survey by boat in Punta Ycacos Lagoon confirmed additional submerged features 174 identified from aerial photos (McKillop 1995). Surface supplied diving excavations at 175 Punta Ycacos occurred along transects, with rope tethered to the seafloor, PVC pipes 176 placed at 1 m intervals, and 1×1 m metal frames to control excavations. A large steel 177 knife was used to cut the anaerobic peat matrix surrounding structures and artifacts 178 into 10 cm level blocks. These blocks are placed on floats tied to a pulley system and 179 conveyed off-site for water screening through 0.635 cm mesh. Column and sediment 180samples from each unit are collected for geochemical and loss-on ignition (LOI) analy-181 ses. Plant parts are identified by microscopy and pottery and wood are kept in bags of 182 water and desalinated in a wet lab. Select specimens are photographed for 3 D imaging. 183 Samples of wood posts are cut for species identification and ¹⁴C dating. An 184

185asymmetrical Mayan canoe paddle found at Punta Ycacos Lagoon is the only such arti-186fact known, as well as an example of the preservation potentials of anaerobic conditions187(McKillop 2005b). McKillop, Sills, and Harrison (2010) were also able to construct a188late Holocene sea-level record from sediment coring and radiocarbon dating.

PaleoAucilla/PaleoEconfina 1986–Present

189 190

191

192 CEI's 1977 Gulf of Mexico study described the Apalachee Bay of Florida as highly likely 193 to contain offshore precontact sites (Figure 1; CEI 1977). This potential was identified 194 from the abundance of terrestrial Paleoindian and Archaic sites that should continue 195 offshore. The marine environment of Apalachee Bay is relatively low energy and the 196 seafloor geology is exposed and shallowly buried karst with a very low slope. These facts 197 are advantageous for site abundance, preservation, and research.

198 For these reasons, Faught began research in this region in 1986, diving and snorkel-199 ing offshore with then Florida State Underwater Archaeologist Jim Dunbar and several 200 avocationals. Artifacts were found at several rock outcrops mapped on local NOAA 201 navigation charts. These outcrops, in depths of 2 m or less, were demonstrated to be 202outcrops of chert with evidence of quarry knapping. Bathymetric data from NOAA 203 charts were used to estimate the depressions of the PaleoEconfina and PaleoAucilla 204 drainage basins. The karst topography has subtle bathymetric changes that become dis-205 tinct when digitized, gridded for 3-D mesh illustration, and exaggerated to enhance 206 topographic detail. These maps were used during subsequent diver surveys offshore 207 from 1988 to 1989 (Faught 1988). Sub-bottom profiling in 1991 mapped the 208 PaleoAucilla thalweg and stratigraphy. These data were added to the previously digitized 209 navigation data for more precise depictions of bottom morphology (illustrated in 210 Faught and Gusick 2011, 150, figure 12.3). This remote sensing revealed a series of lin-211 ear sinkholes and shoals forming the paleochannel. In a second phase of research opera-212 tions from Florida State University from 1998 to 2003, side-scan sonar was effective at 213 identifying rocky areas where divers often found clusters of ex-situ, surface lithic arti-214 facts (Faught 2002, 2004, 2019). Found in 1989 by diver survey, J&J Hunt (8 Je 740) is 215 the most studied of the deflated, channel margin, rocky area sites of the PaleoAucilla 216 (Arbuthnot 2002; Faught 2004). 217

Vibracores were driven into one of the remotely sensed sinkholes in the paleochannel 218 near J&J Hunt during the 1991 foray. In 1992, divers sampled J&J Hunt by hand fan-219 ning 0.25 m² square, 10 cm deep test units, collecting artifacts and sediment samples in 220 depths of 4-5 m. Hydraulic dredges (10 and 15 cm) were used to probe 3 m into the 221 sinkhole, near one of the cores taken the year before. This sondage aimed to find a sedi-222 ment bed like the one at Page-Ladson; the stratified, pre-Clovis through early Holocene 223 aged, freshwater submerged archaeological site located inland a short 10 km away 224 (Dunbar 2006; Faught 1996, 388-393; Halligan et al. 2016; Webb 2006). In total, divers 225 dug 34, 1 meter-square test units at J&J Hunt, with 10 cm hydraulic dredges (Faught 226 2004, 282). The fluidized sediments from the test units were pumped topsides to float-227 ing screen decks and through 0.635 cm mesh (Faught 2002, 282, figure 7). 228

The artifacts from J&J Hunt are reworked, but within a clear and confined area. Excavations revealed artifacts constrained to the upper marine sands and brackish

241

242

243

244

245

246

247

248

249

250

251 252 253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270 271

272 273

274

231 organic deposits. These unconformably overlay the ravinement surface of a truncated, 232 subaerially indurated, silty-clay soil on bedrock. Juvenile mastodon teeth and cranial ele-233 ments were embedded in this soil, but no artifacts were recovered, and these fossils con-234 tained insufficient collagen for radiocarbon. In general, artifacts were stained but not 235 water-worn by their extended marine submergence. This context is analogous to a 236 plow-zone terrestrially. The stratigraphic sequence of transgression, from freshwater to 237 brackish to marine conditions, was confirmed by foraminifera and ostracod analyses 238 from sediments within the 3 m sondage (Faught 1996, 385-386). 239

The earliest ages from freshwater deposits and *in situ* stumps are just slightly older than 8,000 cal BP, a bracketing age for sea-level at that time. Radiocarbon control from *in-situ* cypress tree stumps and oyster shell were used to reconstruct local sea-level history (Faught and Donoghue 1997; Joy 2019). Hundreds of chipped stone artifacts collected at J&J Hunt, and other sites found by this research, include diagnostic projectile points, tools, and debit-age (Faught 1996, 401–455, 2004). The diagnostics indicate late Pleistocene and early Holocene occupants experienced an inland, upland, riverine landscape. These diagnostics were comingled with those of middle Holocene age, along with middens of disarticulated *Crassostrea* shell from the coastal landscape experienced by later, Middle Archaic culture groups. Research in the PaleoEconfina continues by others (Garrison and Cook Hale 2019; Cook Hale, Hale, and Garrison 2019), and coauthor Smith is conducting research west of the PaleoAucilla drainage described more in the discussion.

Montague Harbour 1989–1992

Montague Harbour, British Columbia, contains an intertidal shell midden that extends offshore. Researchers recognized offshore potentials from excavations that exposed a deep, stratigraphic record of midden deposits flooded by groundwater (Easton 1993; Easton and Moore 1991, 2007; Easton, Moore, and Mason 2020). This context is analogous to that at Wild Cane Cay, Belize, described above, but Montague Harbour is much earlier, with inundated deposits dating to \sim 7,000 cal BP. Underwater excavations were conducted 90 m offshore in 5 m of water. Divers used a 15 cm dredge to dig 2.8 m into the sediment beds (Easton, Moore, and Mason 2020, 11). Easton, Moore, and Mason (2020, 11–15) illustrate and describe the excavations and details of the findings in detail.

By observation, and using foraminifera and radiocarbon analyses, they mapped a stratigraphic sequence for transgression from terrestrial, to brackish, to marine sediments, as with the example from the PaleoAucilla above. Changes in mollusk species also demonstrated a terrestrial-brackish-marine sequence (Easton 1993; Easton and Moore 2007; Easton, Moore, and Mason 2020). Food remains of terrestrial fauna and mollusks, and fragments of organic and inorganic artifacts, were well-preserved by the buried anaerobic sedimentary environment. Easton, Moore, and Mason (2020) describe this research in detail.

Werner Bay and Pacific Northwest Coast 1995–Present

There is currently a groundswell of interest in the role that submerged landscapes played in the peopling of the Americas. If the initial peopling of the Western 277 Hemisphere was by the Pacific Northwest Coast, that place should exhibit very early 278 sites (~16,000-14,000 cal BP; see Easton 1992, Braje et al. 2017, Braje et al. 2020, Davis 279 et al. 2019). Along this rocky coast and seafloor, Canadian researchers are mapping 280with side-scan sonar, sub-bottom profiler, and multibeam echosounder, showing a sea-281 floor made up of exposed and shallowly buried, rocky paleolandscapes with paleochan-282 nels and terraces (Fedje and Josenhans 2000, 100; Mackie, Fedje, and McClaren 2018; 283 Josenhans et al. 1997). Multibeam echosounder post-processing produces sun-illumi-284 nated and color-ramped digital terrain images that are immediately informative of 285 exposed, paleolandscape morphologies.

286 In one 10 km² study area in Werner Bay, Hecate Strait, British Columbia, Fedje and 287 Josenhans (2000) targeted remotely sensed paleoterraces for testing. Terraces are analogs 288of places where Native Americans live along the Pacific Northwest coast terrestrially. 289 Fedje et al. used a large clamshell grab sampler able to penetrate 50 cm into the gravelly 290 substrate. The sampler is dropped and retrieved from a large research vessel. With one 291 of several grab samples, researchers recovered a single, unequivocal chipped stone arti-292 fact (Fedje and Josenhans 2000, 102; Mackie, Fedje, and McClaren 2018). The terrace is 293 estimated to have been subaerially exposed at \sim 12,600 cal BP based on sea-level curves 294 of the region and the depth of the paleoterrace (Fedje and Josenhans 2000, 99). 295

Easton, Moore, and Mason (2020, 17) describe additional Parks Canada forays in 2005 and 2007, as well as recent CRM projects diving remotely sensed landscapes up to 30 m deep. Testing methods include grab sampling, hand fanning, coring, and hydraulic dredge excavating but no additional cultural materials have been reported. Easton, Moore, and Mason (2020, 17) note that working at the depths modeled for earliest sites (older than 14,000 cal BP) will require technical diving operations for longer stays and excavation methods better able to penetrate compacted seabed sediments.

Hillsborough Bay, Florida-2007

296

297

298

299

300

301

302 303 304

305 Excavations proposed in 2007 for freighter-size docking berths in Hillsborough Bay, 306 Florida, triggered a CRM survey for submerged precontact resources. Panamerican 307 Consultants, Inc. (PCI) was contracted to conduct the survey. Hillsborough Bay is a 308 marine submerged setting within Tampa Bay where twentieth and twenty-first century 309 dredging for navigation channels and "made land" constructions altered the configur-310 ation of the bay bottom considerably (Figure 1; Faught 2014; Faught and Ambrosino 311 2007). The precontact bay bottom was estimated by georeferencing digitized navigation 312 charts made by US Army surveyors between 1859 and 1879. The original bay bottom 313 was mapped as \sim 3–4 m deep at the project location. Sub-bottom profiling revealed the 314 PaleoHillsborough thalweg and terrace buried under 3.6 to 4 m of marine sediments. 315 This terraced, channel margin location represented a place where a site (if present) 316 would be eligible for the National Register of Historic Places (NRHP) and a need, there-317 fore, to mitigate. 318

This channel margin sub-bottom target was "tested" by monitoring large-scale hydraulic dredge effluent. The project was approved as experimental mitigation by the Florida Division of Historical Resources (FDHR). Dredge effluent was pumped 8.5 km through 0.9 m diameter piping from the excavation site to the sediment dumping basin

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340 341 342

343 344

345

346

347

348

349

350

351

352

353

(Faught 2014, 40, figure 3.1; Faught and Ambrosino 2007). Field crews observed flow at all times and recovered cut-marked faunal bone and chipped stone artifacts, including a diagnostic Middle Archaic projectile point. The fluidized matrix surrounding these materials was brown, contrasting the gray marine sediments coming before and after, indicating terrestrial deposits were encountered.

The position of artifacts and faunal bone was calculated using time-stamped, threedimensional positioning from the dredge cutter head and transit time through the dredge to the made-land dump. The archaeological site is recorded in the Florida Master Site File (FMSF) as 8Hi11393. No additional analyses other than projectile point and faunal bone identifications were done, while an inventory of associated chipped stone debitage was conducted using standard CRM procedures. The elevation of artifacts with regard to estimates of sea-level rise in Tampa Bay are consistent with the age of the diagnostic point (middle Holocene). In addition to the unequivocal artifacts encountered, there were "dredge-facts:" chert nodules flaked by the dredge impellors (Faught 2014; Faught and Ambrosino 2007). By-passing the effluent from the impellors would avoid damage such as this, and screening from a sluice-like ramp should be mandatory if attempting this method again.

Espiritu Santo, Baja 2008–2011

Gusick reasoned that a cluster of early and middle Holocene shell middens, known and studied terrestrially on Isla Espiritu Santo, in Baja California, indicated that more sites of those ages would be underwater (Figure 1; Faught and Gusick 2011; Gusick and Davis 2010; Gusick and Faught 2011). Initially, Gusick used a small boat echosounder and hand-held GPS to record depth measurements between Isla Espiritu Santo and Isla Ballena. These data were combined with terrestrial topographic data to construct a digital elevation model (DEM) that included terrestrial and submerged morphology. This method was similar to mapping the PaleoAucilla. Gusick targeted several areas for diving and testing in 2008, and one of those places was interpreted as a shell midden (Faught and Gusick 2011; Gusick and Davis 2010; Gusick and Faught 2011).

354 Methods for testing included hand fanning and collecting samples from 1 m diameter 355 test units excavated down 90 cm. Divers hand-picked samples from stratigraphic expo-356 sures while hand fanning and sorted through collected sediment samples post-dive. 357 From one of these units in 2008, at 20 m deep, divers recovered manuported cobbles 358 and possible chipped stone artifacts imbricated with disarticulated Ostrea pamula shell 359 buried beneath approximately 30 cm of substrate (Gusick and Davis 2010; Gusick and 360 Faught 2011). By eustatic sea level estimates this landscape would have been trans-361 gressed by ~9000 cal BP (Siddall et al. 2003). Gusick returned in 2010 to map a large 362 area with side-scan sonar around both islands and to dive to targets generated from 363 those data (Gusick and Glasow 2011). Divers surveyed and tested side-scan targets to 364 depths of 30 m and experimented with a 7.6 cm diameter PVC device to core and air 365 lift dredge sediments. While there was no discovery of additional, unequivocal, sub-366 merged precontact archaeological materials in 2010, the paleolandscape is mapped for 367 future researchers to continue. The radiocarbon age of a single Ostrea shell from the 368

unit with artifacts was much younger than the estimated age of the deposit by depth, or by the sites onshore, facts compounding the need for additional research there.

Discussion

369

370

371 372

373 374

375

376

377

378

379

380

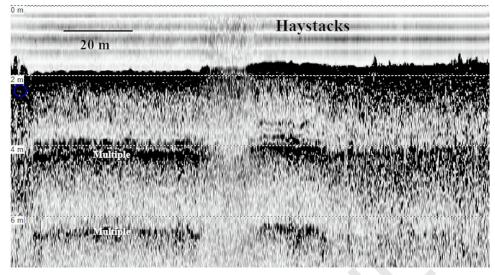
381

382

383

These seven submerged precontact geoarchaeology projects followed similar systematic, phased trajectories to find submerged precontact sites: recognition of potential, mapping and understanding paleolandscapes, modeling where sites should be based on local terrestrial analogs, and testing underwater. Each project worked from the terrestrially known, to the submerged unknown. The projects are listed chronologically (Table 1), and it is noteworthy that three projects, PaleoSabine, Belize, and PaleoAucilla/ PaleoEconfina, began between the late 1970s and mid-1980s, around the same time as continental shelf precontact archaeology in the Americas was being published (Flemming 1983; Masters and Flemming 1983). Three of the seven projects currently continue: Pacific Northwest Coast, Belize, and PaleoAucilla/Econfina.

384 The researchers of these seven projects found sites in marine continental shelf settings 385 by methodical and phased research strategies, but funding was the first challenge for 386 each. Most of the funding sources for these projects were, and are, from governmental 387 agencies, such as the Canadian Geological Survey and Parks Canada, National Oceanic 388 and Atmospheric Administration (NOAA) and the Bureau of Ocean and Energy 389 Management (BOEM, formerly Minerals Management Service [MMS]). These resources 390 are offered as requests for proposals, and they are often related to recommending cul-391 tural resource management (CRM) policies for submerged precontact sites. The 392 National Science Foundation (NSF) funded two of the seven projects for academic 393 research (Belize and PaleoAucilla projects). National Geographic funded Gusick's first 394 diving foray, and NOAA her second (Gusick and Glasow 2011; Faught and Gusick 395 2011). EarthWatch funding and volunteers were effective resources for Belize and 396 PaleoAucilla projects (Faught 1996; McKillop 1995). Private donations funded much of 397 Faught's dissertation research in the PaleoEconfina and PaleoAucilla (Faught 1988, 398 The Florida Division of Historical Resources (FDHR) supported much 1996). 399 PaleoAucilla research through Florida State University (FSU), and they continue to be a 400significant source of funding for submerged precontact archaeology in Florida. 401


The different approaches of these seven projects show diverse and clever mapping 402 and modeling strategies, as well as myriad underwater testing methods to identify "sites" 403 (i.e. evidence of human behaviors). Each approach is devised for the local marine geo-404 logical and terrestrial culture historical environment. In most cases, local terrestrial 405 landscape analogs, such as river channels, midden deposits, ponds, sinkholes, springs, 406 and any prominent features are targeted. Additionally, specific culture historical behav-407 iors are used to model whether particular submerged paleolandscape features will 408 exhibit sites at certain depths. In two cases, sites were simply traced into the water from 409 known terrestrial and intertidal sites. 410

411All of the seven projects in this summary used local and eustatic sea-level curves to412estimate the extents and evolution of submerged landscapes. Three projects yielded data413for more precise controls locally after radiocarbon analysis of environmental samples414(Faught and Donoghue 1997; Fedje and Josenhans 2000; Mackie, Fedje, and McClaren

 COLOR

Online / B&W in

Print

Figure 2. One example of haystack reflections in the water column from Clint's Scallop Hole (8Je1759), Apalachee Bay, Florida. There is abundant flintknapping debris present at the site and 13 haystack anomalies are recorded. One has proven positive for chipped stone by diving in August of 2020. More experimentation and diving are planned. Data from Morgan Smith, 2018, post-processing by Faught 2020.

2018; McKillop, Sills, and Harrison 2010). Understanding apparent, local sea level transgression rate and extent is particularly important for Canadian researchers where the isostatic and tectonic readjustments over time are sinusoidal.

Much is written about the destructiveness of seas transgressing terrestrial landscapes. Likewise, much has been written about the phenomenal preservation that can take place with burial in anerobic conditions. Both processes are true, depending on place, but truncation and reworking certainly dominate the results of sea-level rise globally. With systematic approaches and awareness of site formation processes, areas where sediments may be preserved, exposed, or shallowly buried, can be readily identified (see Harris 2018; Harris et al. 2013 for examples). Where targets are buried, seabed overburden can be removed to expose ravinement surfaces from which buried sediments can be excavated with accuracy, the size of excavations being limited to the sizes of the dredges and screen rigs available. Besides depth in the water, limiting factors include matrix stability or coffer buttressing capacity, or both.

We expect the practice and technology of testing sediments underwater will see many improvements in future projects. Some of this already happening, namely the implementation of remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs). Mapping bottom morphology and observing sonar targets with ROVs using videography and photogrammetry makes a record for study and diver bottom time more efficient. ROV's provide accurate GPS locational control when tracked by in-water transponders for photogrammetric mapping. A small ROV is used at \sim 33 m depths in Lake Huron to observe and map caribou runs and other features of the exposed paleo-landscape (Lemke and O'Shea 2019; O'Shea 2015). Experimentation with remote sampling, by ROV grasping, jetting, and dredging are promising avenues for testing in the

Project	Artifacts unequivocal?	Geologic context secure?	Age by radiometrics?
PaleoSabine	No	Yes	Yes
Wild Cane Cay/Punta Ycacos	Yes	Yes	Yes
PaleoAucilla/Econfina	Yes	Yes	No
Montague Harbor	Yes	Yes	Yes
Hecate Strait	Yes	No	No
Tampa/Hillsborough Bay	Yes	No	No
Isla Espiritu Santo	No	Yes	No

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

future. AUVs map large areas of submerged landscapes with sonar, seismic, and other instruments before returning to a mother ship, reducing effects of roll, heave and pitch experienced when towing in rough seas.

In addition to remote sensing for landscapes potential for submerged precontact sites, we suggest that two types of physical sites can be remotely sensed. These are shell middens and lithic deposits via sonar "haystacks." Shell middens are formed of interlaced, erosion resistant, compacted materials that produce high backscatter side-scan sonar targets when exposed and, positive-relief sub-bottom reflectors when buried (Gagliano et al. 1982). Two projects we know of in the Americas tested sub-bottom reflectors proposed as middens, with the results showing natural bio herm deposits (Jazwa and Mather 2014; Leach and Belknap 2007). A known midden was remotely sensed in Denmark and is illustrated in Astrup et al. (2020). A positive relief sub-bottom profiler target identified during a CRM survey produced abundant disarticulated shell and avian bone interpreted as a precontact midden when tested in the St. Johns River, Florida (8 DU 1116; Faught 2014; Faught and James 2011).

484 Another potential for directly remote sensing sites is a recently recognized sonar sig-485 nature from chipped stone artifacts. It has been observed and theorized that knapped 486 chipped stone materials resonate with low-frequency sound and the disturbance is 487 recorded in the projected water column as "haystacks." Grøn et al. remotely sensed with 488 sub-bottom profiler deposits of Neolithic knapped flint submerged off the coast of 489 Israel. The data produced numerous anomalies, referred to as "haystacks," where the 490 knapped flint was pinged (Grøn et al. 2018; Gron and Boldreel 2014; Hermand et al. 491 2011). On the other hand, unquarried bedrock exposures of chert did not produce hay-492 stack anomalies when remotely sensed, supporting the theory that these signatures 493 reflect knapped material only (Grøn et al. 2018). Smith et al. have remotely sensed with 494 sub-bottom profiler a large chert quarry site known in Apalachee Bay, away from the 495 PaleoAucilla and first reported by a local scalloper (8 JE 1796, Clint's Scallop Hole). 496 The post-processed data resulted in 11 "haystack" targets, five of which have proved 497 positive for chipped stone thus far (Figure 2). More remote sensing and experiments 498 are planned. 499

Fieldwork by diving underwater is logistically constrained, but excavation and other 500 sampling methods can be as precise, or nearly as precise, as any terrestrial operation, 501 given sufficient time and resources. However, would the evidence from these projects 502 satisfy evaluation criteria as early sites might be evaluated terrestrially? This muster 503 includes demonstration of unequivocal artifacts, secure geologic context, and age estima-504 tion by radiometric, or other reliable method (Havnes 1969; Table 2). The weakest 505 examples of a "site" from these projects include the proxy evidence from the 506

507 PaleoSabine cores and the single artifact found in Werner Bay. We consider the proxy 508 evidence from the PaleoSabine core samples to be convincing, but additional testing is 509 necessary to confirm this by finding artifacts. The most secure artifact and feature abun-510 dances come from the Montague Harbour, Belize, and the PaleoAucilla/PaleoEconfina 511 projects. Montague Harbour and Belize have unequivocal control on strata, chronology, 512 and artifacts. All of the evidence from the PaleoAucilla and PaleoEconfina projects is 513 stratigraphically re-worked and co-mingled. However, these sites are spatially cohesive 514 and temporally accurate via diagnostic artifacts, but they are not precisely dated within 515 intact stratigraphy. The Hillsborough Bay dredge monitoring project lacks acceptable 516 precision of stratigraphic context and chronology, yet the artifacts are unequivocal. The 517 age of the Espiritu Santo midden is in question, but the stratigraphic context and arti-518 facts are not. 519

Conclusions

520 521

522 523

524 525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

We found seven examples of published research projects that encountered precontact Native American sites underwater in marine submerged continental shelf settings by systematic and phased research. We are aware of other projects that are in progress, employing similar strategies (mapping, modeling, testing) that may prove successful in the near future. These include the Canadians in the Pacific Northwest Coast (Easton, Moore, and Mason 2020; Mackie, Fedje, and McClaren 2018), Braje et al. (2019) in the Pacific, and Evans (2020) in the Gulf of Mexico. Current cultural resource management (CRM) projects for wind farms in the Atlantic and Pacific should be adding more continental shelf areas mapped, and more places to make models and conduct search.

Outside of the Americas there is a large library of examples of mapping, modeling, and testing in Scandinavia, Europe, the Mediterranean, and Australia (Bailey et al. 2020; Benjamin and Bailey 2017; Bailey, Harff, and Sakellariou 2017; Tsakanikou, Galanidou, and Sakellariou 2020; Benjamin et al. 2011, 2020; Sturt et al. 2018). We are also aware of past projects that failed their goal (e.g. Hemmings and Adovasio 2014), and we empathize with the efforts that went into that research, from proposal to field work. After all, projects that do not find sites contribute to knowing those places, correcting models, and narrowing the expanses to survey.

540 More academic and private sector CRM geoarchaeologists are needed to conduct 541 research underwater for submerged sites and Native American precontact histories. This 542 includes the need for administrators of local, state, and federal cultural resources to 543 require more underwater surveys focused on submerged precontact sites, and to distrib-544 ute more resources for research focused on these sites. In the Americas, graduate pro-545 grams to do archaeology underwater are dominated by European and American 546 histories and related historic-aged resources, including the Texas A&M Nautical 547 Program, the Maritime Studies track at East Carolina, and the Underwater Archaeology 548 program at the University of Miami. Graduate-level opportunities for underwater 549 archaeology of submerged precontact sites include the Center for the Study of First 550 Americans at Texas A&M University, the University of Michigan, and Florida 551 State University. 552

Finally, we find it curious, in the case of Northwest Coast research projects, that there 553 554 remains a dearth of evidence for first people earlier than 12,600 cal BP. And this after 555 mapping and searching in many places, underwater and terrestrially, and with state-of-556 the-art models and equipment (Fedje and Mathewes 2005; Easton, Moore, and Mason 557 2020; Mackie, Fedje, and McClaren 2018; Mackie et al. 2013). It may be that this really 558 is evidence of absence of an early coastal migration from Beringia. It may also be that 559 this is simply an absence of that evidence - so far. More submerged precontact geoarch-560 aeology will surely help to clarify the role the NW coast, and other continental shelf 561 areas played in the peopling of the Americas. 562

Acknowledgements

563 564

565

566

567

568

569

570

571

572 573

574 575

576 577

578 579

580

581

582

583

584

585

586

587

588

589

590

591

We reiterate the importance of the pioneering work by the recently deceased Woody Gagliano and his staff Richard Weinstein, Charles Pearson, and David Kelley at CEI. We appreciate the working relationship we have with our Danish colleagues and their pioneering acoustic studies. We are grateful for funding and equipment support from the Archaeological Research Cooperative (www.arcoop.org). John O'Shea recommended the topic to us. We are grateful for the comments of three anonymous reviewers for an earlier version and we are forever grateful for Charlotte Pevny waking us up to a better way.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

Arbuthnot, M. A. 2002. A paleolandscape reconstruction of the J & J hunt site (8JE740) and its surrounding area, MA, Anthropology, Florida State University.

- Astrup, P. M., C. Skriver, J. Benjamin, F. Stankiewicz, I. Ward, J. McCarthy, P. Ross, P. Baggaley, S. Ulm, and G. Bailey. 2020. Underwater shell middens: Excavation and remote sensing of a submerged Mesolithic site at Hjarnø. *The Journal of Island and Coastal Archaeology* 15 (4): 457-76. doi:10.1080/15564894.2019.1584135
- Bailey, G., Galanidou, N., Peeters, H., Jöns, H., & Mennenga, M., eds. 2020. The archaeology of Europe's drowned landscapes. Cham: Springer.
 - Bailey, G. N., J. Harff, and D. Sakellariou. 2017. Under the sea: Archaeology and paleolandscapes of the continental shelf. Cham: Springer.
 - Benjamin, J., and G. Bailey. 2017. Coastal adaptations and submerged landscapes: Where world prehistory meets underwater archaeology. In From hunter-gatherers to farmers: Human adaptation at the end of the Pleistocene and the first part of the Holocene, ed. M. Mărgărit and A. Boronean, 169–83. Targoviște: Editura Cetatea de Scaun.
- 592 Benjamin, J., C. Bonsall, C. Pickard, and A. Fischer. 2011. *Submerged prehistory*. Oxford: Oxbow Books.
- Benjamin, J., M. O'Leary, J. McDonald, C. Wiseman, J. McCarthy, E. Beckett, P. Morrison, F. Stankiewicz, J. Leach, J. Hacker, et al. 2020. Aboriginal artefacts on the continental shelf reveal ancient drowned cultural landscapes in northwest Australia. *PLos One* 15 (7):e0233912. doi:10. 1371/journal.pone.0233912.
- Braje, T. J., T. D. Dillehay, J. M. Erlandson, R. G. Klein, and T. C. Rick. 2017. Finding the first
 Americans. *Science (New York, N.Y.)* 358 (6363):592–4. doi:10.1126/science.aao5473

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

624

- Braje, T., J. Erlandson, T. Rick, L. Davis, T. Dillehay, D. Fedje, D. Froese, A. Gusick, Q. Mackie,
 B. Pitblado, et al. 2020. Fladmark + 40: What have we learned about a potential pacific coast
 peopling of the Americas? *American Antiquity* 85 (1):1–21. doi:10.1017/aaq.2019.80
 - Braje, T. J., J. Maloney, A. E. Gusick, J. M. Erlandson, A. Nyers, L. Davis, K. M. Gill, L. Reeder-Myers, and D. Ball. 2019. Working from the known to the unknown: Linking the subaerial archaeology and the submerged landscapes of Santarosae Island, Alta California, USA. Open Quaternary 5 (1):1–15. doi:10.5334/0q.66
 - CEI. 1977. Cultural resources evaluation of the Northern Gulf of Mexico continental shelf, Volume I: Prehistoric cultural resource potential, and Volume III: Maps. Coastal Environments, Inc, for the Office of Archeology and Historic Preservation, National Park Service, U.S. Dept. of the Interior, Washington, DC. https://digital.library.unt.edu/ark:/67531/metadc955558/.
- Cook Hale, J. W., N. L. Hale, and E. G. Garrison. 2019. What is past is prologue: Excavations at the Econfina Channel site, Apalachee Bay, Florida, USA. *Southeastern Archaeology* 38 (1):1–22. doi:10.1080/0734578X.2018.1428787
- Davis, L. G., D. B. Madsen, L. Becerra-Valdivia, T. Higham, D. A. Sisson, S. M. Skinner, D. Stueber, A. J. Nyers, A. Keen-Zebert, C. Neudorf, et al. 2019. Late Upper Paleolithic occupation at Cooper's Ferry, Idaho, USA, ~16,000 years ago. *Science (New York, N.Y.)* 365 (6456): 891–7. doi:10.1126/science.aax9830
- Dunbar, J. S. 2006. Paleoindian archaeology. In First Floridians and Last Mastodons: The Page-Ladson site in the Aucilla River, ed. D. S. Webb, 403–35. Dordrecht: Springer.
 - Easton, N. 1992. Mal de mer above terra incognita or what ails the coastal migration theory? *Arcta Anthropologica* 29:28–42.
- Easton, N., and C. Moore. 2007. Test excavations of subtidal deposits at Montague Harbour, British Columbia, Canada—1989. *International Journal of Nautical Archaeology* 20 (4):269–80. doi:10.1111/j.1095-9270tb00323.x
- Easton, N. A. 1993. Underwater archaeology in Montague Harbour: *Report on the 1992 field Investigations. Volume I: Field and technical reports.* Volume II: Artifact catalogue of the 1992
 collections. Occasional Papers of The Northern Research Institute. Whitehorse: Yukon College.
 - Easton, N. A., and C. Moore. 1991. Test excavations of subtidal deposits at Montague Harbour, British Columbia. *International Journal of Nautical Archaeology* 20 (4):269–80. doi:10.1111/j. 1095-9270.1991.tb00323.x
- Easton, N. A., C. Moore, and A. R. Mason. 2020. The archaeology of submerged prehistoric sites on the North Pacific Coast of North America. *The Journal of Island and Coastal Archaeology*: 1–32. doi:10.1080/15564894.2020.1785061
- Evans, A. 2020. Paleolandscapes of the Gulf of Mexico 2020. Accessed December 7, 2020. https://
 oceanexplorer.noaa.gov/explorations/20paleolandscapes-gomex/background/plan/plan.html.
- Faught, M. K. 1988. Inundated sites in the Apalachee Bay Area of the eastern Gulf of Mexico.
 Florida Anthropologist 41 (1):185–90.
- Fiorida Anthropologist 41 (1):133–90.
 Faught, M. K. 1996. Clovis origins and underwater prehistoric archaeology in northwestern Florida. Ph.D. diss., University of Arizona.
- Faught, M. K. 2002. Submerged Paleoindian and Archaic sites of the big bend. Journal of Field
 Archaeology 29 (3/4):273-90. doi:10.2307/3250893
- Faught, M. K. 2004. The underwater archaeology of paleolandscapes, Apalachee Bay, Florida.
 American Antiquity 69 (2):275- 49. doi:10.2307/4128420
- Faught, M. K. 2014. Remote sensing, target identification, and testing for submerged prehistoric sites in Florida: process and protocol in underwater CRM projects. In *Prehistoric archaeology of the continental shelf: A global review*, ed. J. Flatman, A. Evans, and N. Flemming, 37–52. Springer.
- Faught, M. K. 2019. Underwater archaeology of paleolandscapes in the big bend: Ten years of research on the offshore, 1986-1992 and 1998-2002. In *New directions in the search for the First Floridians*, ed. David K. Thulman and Ervan G. Garrison, 26–40. Gainesville: University Press of Florida.

Faught, M. K., and J. N. Ambrosino. 2007. Archaeological monitoring for Berth 218 dredging,
Port Sutton, Hilsborough County, Florida. Prepared for the Tampa Bay Port Authority, Florida
Master Site File Survey #14748.

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

- Faught, M. K., and J. F. Donoghue. 1997. Marine inundated archaeological sites and paleofluvial systems: Examples from a karst-controlled continental shelf setting in Apalachee Bay. *Geoarchaeology* 12 (5):417–58. doi:10.1002/(SICI)1520-6548(199708)12:5<417::AID-GEA1>3.0. CO;2-2
 - Faught, M. K., and A. E. Gusick. 2011. Submerged prehistory in the Americas. In *Submerged prehistory*, ed. J. Benjamin, C. Bonsall, C. Pickard, and A. Fischer, 145–57. Oxford: Oxbow Books.
- Faught, M. K., and S. R. James. 2011. Diver identification and archaeological testing: Addendum to cultural resources remote sensing survey of Jacksonville Harbor Project GRR2, Duvall County, Florida. Prepared for US Armorps of Engineers, Jacksonville District, by Panamerican Consultants, Florida Master Site File Survey #11393.
 - Fedje, D. W., and H. Josenhans. 2000. Drowned forests and archaeology on the continental shelf of British Columbia. *Geology* 28 (2):99–102. doi:10.1130/0091-7613(2000)28 < 99:Dfaaot
 - Fedje, D. W., and R. W. Mathewes. 2005. *Haida Gwaii: Human history and environment from the time of loon to the time of the iron people*. Vancouver: UBC Press.
 - Flemming, N. C. 1983. Survival of submerged Lithic and Bronze Age artifact sites: A review of case histories. In *Quaternary coastlines*, ed. P. M. Masters and N. C. Flemming, 135–73. New York: Academic Press.
 - Gagliano, S. M., C. E. Pearson, R. A. Weinstein, D. E. Wiseman, and C. M. McClendon. 1982. Sedimentary studies of prehistoric archaeological sites: Criteria for the identification of submerged archaeological sites of the northern Gulf of Mexico continental shelf. Prepared for the U.S. Department of the Interior National Park Service, Division of State Plans and Grants, Contract No. C35003(79).
 - Garrison, E. G., and J. W. Cook Hale. 2019. Geoarchaeeoogy underwater and its challenges: An example from Florida. In *New directions in the search for the First Floridians*, ed. D. K. Thulman and E. G. Garrison, 175–93. Gainesville: University of Florida Press.
 - Grøn, O., L. Boldreel, J.-P. Hermand, H. Rasmussen, A. Dell'Anno, D. Cvikel, E. Galili, B. Madsen, and E. Nørmark. 2018. Detecting human-knapped flint with marine high-resolution reflection seismics: A preliminary study of new possibilities for subsea mapping of submerged Stone Age sites. Underwater Technology 35 (2):35–49. doi:10.3723/ut.35.035
 - Grøn, O., and L. O. Boldreel. 2014. Chirping for large-scale maritime archaeological survey: A strategy developed from a practical experience-based approach. *Journal of Archaeology* 2014: 1–11. doi:10.1155/2014/147390
 - Gusick, A., and M. Glasow. 2011. Mal de mer no mas: Searching for early underwater sites in the Sea of Cortez. Final Report to National Geographic, Grant NA09OAR4600084.
 - Gusick, A. E., and L. Davis. 2010. Exploring Baja Californias submerged landscapes. *Journal of California and Great Basin Anthropology* 30 (1):35–49.
 - Gusick, A. E., and M. K. Faught. 2011. Chapter 2: Prehistoric archaeology underwater: A nascent subdiscipline critical to understanding early coastal occupations and migration routes. In *Trekking the shore: Changing coastlines and the antiquity of coastal settlement, interdisciplinary contributions to archaeology*, ed. N. Bicho, J. Haws, and L. Davis, 27–50. New York: Springer.
 - Halligan, J. J., M. R. Waters, A. Perrotti, I. J. Owens, J. M. Feinberg, M. D. Bourne, B. Fenerty,
 B. Winsborough, D. Carlson, D. C. Fisher, et al. 2016. Pre-Clovis occupation 14,550 years ago at the Page-Ladson site, Florida, and the peopling of the Americas. *Science Advances* 2 (5): e1600375. doi:10.1126/sciadv.1600375
 - Harris, M. S. 2018. Paleogeography and sea level positions on the southeastern US continental margin since the LGM. In *Early human life on the Southeastern Coastal Plain*, ed. A. C. Goodyear and C. R. Moore, 90–107. Gainesville: University of Florida Press.
- Harris, M. S., L. R. Sautter, K. L. Johnson, K. E. Luciano, G. R. Sedberry, E. E. Wright, and A. N. S. Siuda. 2013. Continental shelf landscapes of the southeastern United States since the last interglacial. *Geomorphology* 203 (0):6–24. doi:10.1016/j.geomorph.2013.02.014

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

- Haynes, C. V. 1969. The earliest Americans. Science (New York, N.Y.) 166 (3906):709–15. doi:10.
 1126/science.166.3906.709
 - Hemmings, C. A., and J. M. Adovasio. 2014. Inundated landscapes and the colonization of the northeastern Gulf of Mexico. In *Pre-Clovis in the Americas: International science conference proceedings*, *Smithsonian Institution*, ed. D. J. Stanford and A. T. Stenger, 16–31. Washington, DC: CreateSpace Independent Publishing Platform.
 - Hermand, J.-P., O. Grøn, M. Asch, and Q. Q. Y. Ren. 2011. Modelling flint acoustics for detection of submerged Stone Age sites. OCEANS'11 Meetings, Waikoloa, Kona Institute of Electrical and Electronics Engineers. doi:10.23919/OCEANS.2011.6107308
 - Jazwa, C. S., and R. Mather. 2014. Archaeological site or natural marine community? Excavation of a submerged shell mound in Ninigret Pond, Rhode Island. *The Journal of Island and Coastal Archaeology* 9 (2):268-88. doi:10.1080/15564894.2013.823896
 - Josenhans, H., D. Fedje, R. Pienitz, and J. Southon. 1997. Early humans and rapidly changing holocene sealevels in the Queen Charlotte Islands-Hecate Strait, British Columbia, Canada. *Science* 277 (5322):71–4. doi:10.1126/science.277.5322.71
 - Joy, S. 2019. The trouble with the curve: Reevaluating the Gulf of Mexico sea-level curve. *Quaternary International* 525:103–13. doi:10.1016/j.quaint.2019.07.023
 - Leach, P. A., and D. F. Belknap. 2007. Marine geophysics and vibracoring applied to refining the search for submerged prehistory in Damariscotta River, Maine, USA. In *Reconstructing human-landscape interactions, proceedings of the developing international geoarchaeology conference, St. John, New Brunswick, Canada, Oct., 2005, ed. L. Wilson, P. Dickenson, and J.* Jeandron, 21–23. Newcastle upon Tyne: Cambridge Scholar's Press.
 - Lemke, A., and J. O'Shea. 2019. The end of an era? In *People and culture in ice age America: New dimensions in Paleoamerican Archaeology*, ed. R. Suarez and C. F. Ardelean, 156–71. Salt Lake City: The University of Utah Press.
 - Mackie, Q., L. Davis, D. Fedje, D. McLaren, and A. E. Gusick. 2013. Locating Pleistocene-age submerged archaeological sites on the Northwest Coast: Current status of research and future directions. In *Paleoamerican Odyssey*, ed. K. E. Graf, C. V. Ketron, and M. R. Waters, 133–47. College Station: Center for the Study of the First Americans.
 - Mackie, Q., D. Fedje, and D. McClaren. 2018. Archaeology and sea level change on the British Columbia Coast. *Canadian Journal of Archaeology* 42:74–91.
 - Masters, P. M., and N. Flemming. 1983. *Quaternary coastlines: Towards the prehistory of land bridges and continental shelves.* New York: Academic Press.
 - McKillop, H. 1995. Underwater archaeology, salt production, and coastal Maya trade at Stingray Lagoon. *Latin American Antiquity* 6 (3):214–28. doi:10.2307/971673
 - McKillop, H. 2002. Salt: White gold of the ancient Maya. Gainesville: University of Florida Press.
 - McKillop, H. 2005a. Search of Maya sea traders. College Station: Texas A&M University Press.
 - McKillop, H. 2005b. Finds in Belize document Late Classic Maya salt making and canoe transport. *Proceedings of the National Academy of Sciences of the United States of America* 102 (15): 5630-4. doi:10.1073/pnas.0408486102
 - McKillop, H. 2019. Maya Salt Works. Gainesville: Unversity Press of Florida.
 - McKillop, H., G. Harlow, A. Sievert, C. W. Smith, and M. C. Wiemann. 2019. Demystifying jadeite: An underwater Maya discovery at Ek Way Nal, Belize. *Antiquity* 93 (368):502–18. doi:10. 15184/aqy.2019.35
 - McKillop, H., E. C. Sills, and J. Harrison. 2010. A late Holocene record of Caribbean sea-level rise: the K'ak' Naab underwater Maya site sediment record, Belize. ACUA Underwater Archaeology Proceedings 2010:200–7.
 - O'Shea, J. M. 2015. Contructed features on the Alpena-amberley ridge. In *Caribou hunting in the Upper Great Lakes: Archaeological, ethnographic, and paleoenvironmental perspectives*, ed. E. P. Sonnenburg, A. K. Lemke, and J. O'Shea, 115–37. Ann Arbor: Museum of Anthropology, University of Michigan, Memoir 57.
- Pearson, C. E., D. B. Kelley, R. A. Weinstein, and S. M. Gagliano. 1986. Archaeological investigations on the outer continental shelf: A study within the Sabine River Valley, Offshore
 Louisiana and Texas. Prepared for the U.S. Department of the Interior, Minerals Management

- 737 Service, Reston, Va. (Contract # 14-12-0001-30072). Baton Rouge, LA: Coastal Environments,
 738 Inc.
- Pearson, C. E., R. A. Weinstein, S. M. Gagliano, and D. B. Kelley. 2014. Prehistoric site discovery on the outer continetal shelf, Gulf of Mexico, United States of America. In *Prehistoric archaeology on the continental shelf*, ed. A. Evans, J. Flatman, and N. Flemming, 53–72. New York: Springer.

- Siddall, M., E. J. Rohling, A. Almogi-Labin, C. Hemleben, D. Meischner, I. Schmelzer, and D. A. Smeed. 2003. Sea-level fluctuations during the last glacial cycle. *Nature* 423 (6942):853–8. doi: 10.1038/nature01690
- Sturt, F., N. C. Flemming, D. Carabias, H. Jons, and J. Adams. 2018. The next frontiers in research on submerged prehistoric sites and landscapes on the continental shelf. *Proceedings of* the Geologists' Association 129 (5):654–83. doi:10.1016/j.pgeola.2018.04.008
 - Tsakanikou, P., N. Galanidou, and D. Sakellariou. 2020. Lower Palaeolithic archaeology and submerged landscapes in Greece: The current state of the art. *Quaternary International*. doi:10. 1016/j.quaint.2020.05.025
 - Webb, S. D. 2006. First Floridians and Last Mastodons. Dordrecht, the Netherlands: Springer.