The Predicate Form: using artifact shapes to reconstruct prehistoric social interactions

•David K. Thulman
•George Washington University
•Archaeological Research Cooperative, Inc.

How do we understand *cultural* change through time and space?

How do we understand *artifact* change through time and space?

What does these changes tell us about human organization and behavior?

A central problem in archaeology is how & why did cultures evolve (which means: how do we explain the temporal and spatial patterns?)

Reactions or adaptations to environmental changes

Population pressures

Interaction (trade, conflict)

Population movement

Diffusion

Southeastern North America

Late Pleistocene – Early Holocene Epochs Late Paleoindian – Early Archaic Periods

~12,000 - 10,500 years ago

Drier than modern times Sea level lower Modern fauna

~11,700 BP

- Contraction

R.M.

~11,500 BP

- Aller

RM .

Dual Inheritance Theory

Parallels between genetic and cultural processes

Gene Gene pool Genetic inheritance Natural selection Mutation Random genetic drift Error in transmission

Unit of cultural information

Culture pool

Cultural transmission

Cultural selection

Innovation

Random cultural drift

Error in learning or teaching

How is information transmitted?

First Principles

Made by people

People learn to make things by instruction or imitation: from others in earlier and later generations from peers

How do they choose what to make?

Groups of learners tend to arrive at a single shared design

Biased Transmission

Shared design is conservatively preserved through time

How does Ego decide what to do?

Experiment

Take advice: but from whom?

Most successful
What most people are doing

Bolen points

Made ~11,500 B.P.

North Florida

What do we measure?

Manufacture

Landmark Placement for Landmark Geometric Morphometric Analysis (LGM)

4 main Landmarks (1-4) 2 curves (5-9 and 10-14)

Identifying SLGs Using Learning Theory and Considering all Artifact Shape Variation

Made at the same time

Distribution of SN A and CN A Bolen Varieties

Interaction zone 35 km either side of the Suwannee River

People will be in more frequent contact than with others more distant

If we think of this zone as the adjacent edge of 2 neighborhoods

Sewall Wright

Population geneticist

Self organization of systems over time where information is transferred.

Distribution of variation produced by information transfer is determined by various impediments.

Null Hypothesis of No Change

Blended Hypothesis

Exaggeration Hypothesis

And the second se

Testing the Hypotheses

Null Hypothesis: Are the shapes in the interaction zone not significantly different than those outside the zone?

Blending Hypothesis

Are shapes more like one another in the zone than outside the zone?

Exaggeration Hypothesis Are greater shape differences in the Interaction Zone?

How might we get these chronological and spatial distributions?

Migration and Population Replacement

Diffusion of New Information and Local Adoption to Existing Designs

Adapting Design Changes to Predicate Forms

Minimally change the shape Only modifications done to incorporate the design change

> Keep the same size No need to modify the handle or shaft

Keep the same manufacturing techniques No need to learn new motor skills

Migrating or Replacement Population

No spatial differences in Design, Size, and Techniques

~11,700 BP

~11,500 BP

So

Dual Inheritance Theory + LGM allows us to parse subtle but statistically significant shape differences from which we can infer and test:

New Typologies that may better reflect the original makers' intentions

Spatial and temporal artifact variation with a firm theoretical basis (without resorting to environmental adaptation)

Regional interaction spheres

Local SLG interactions

Migration & population replacement or information diffusion

Thanks

Maile Neel, McClung Museum, Michael Faught, Mike Shott, Shane Miller, David Anderson, Florida State Museum, University of North Carolina, Florida Bureau of Archaeology, Don Munroe, Ike Rainey, and several private collectors.

